Home
Class 12
MATHS
Let f:R rarr Rbe differentiable at x = 0...

Let `f:R rarr R`be differentiable at x = 0. If f(0) = 0 and `f'(0)=2`, then the value of
`lim_(xrarr0)(1)/(x)[f(x)+f(2x)+f(3x)+….+f(2015x)]` is

A

2015

B

0(zero)

C

`2015xx2016`

D

`2015xx2014`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f is twice differerntiable on R such that f (0)=1, f'(0) =0 and f''(0) =-1, then for a in R, lim _(xtooo) (f((a)/(sqrtx)))^(x)=

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2