Home
Class 12
MATHS
The domain of the derivative of the func...

The domain of the derivative of the function: `f(x)={{:(,tan^(-1)x,|x| le1),(,(1)/(2)(|x|-1),|x|gt1):}`

A

`R-{0}`

B

`R-{1}`

C

`R-{-1}`

D

`R-{-1,1}`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)={{:((pi)/(4)+tan^(-1)x",",|x|le1),((1)/(2)(|x|-1)",",|x|gt1):} is :

The domain of the derivative of the function f(x)={t a n^(-1)x ,if|x|lt=1 and 1/2(|x|-1),if|x|>1 a.R-{0} b. R-{1} c. -{-1} d. R-{-1,1}

The domain of the derivation of the functions f(x) = {{:(tan^(_1) x", if " |x|le1),(" is"),(1/2(|x|-1)", if "|x| gt 1):}

The domain of derivative of the function f(x)=abs(sin^(-1)(2x^(2)-1)) , is

The domain of derivative of function f(x)=[sin^(-1)(2x^(2)-1)], is

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

The domain of definition of the function f(x)= sin^(-1) (|(x-1)|-2) is

Find the domain of the function f(x)=(1)/(1+2sin x)

The domain of the function:- f(x)=(sin^(-1))(1)/(|x^(2)-1|)