Home
Class 12
MATHS
Let g(x)=1+x-[x] "and ...

Let g(x)=1+x-[x]
`"and " f(x)={{:(-1","x lt 0),(0","x=0),(1","x gt 0):}`
Then, for all x, find f(g(x)).

A

x

B

1

C

f(x)

D

g(x)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=1+x-[x] and f(x)={(-1",",x lt 0),(0",",x=0),(1",",x gt 0):} , then for all x, f[g(x)] is equal to

Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0):} , then for all x , f[g(x)] is equal to

If f(x) = {(x-1,",", x lt 0),(1/4,",",x = 0),(x^2,",",x gt 0):}

Let g(x) = x - [x] - 1 and f(x) = {{:(-1", " x lt 0),(0", "x =0),(1", " x gt 0):} [.] represents the greatest integer function then for all x, f(g(x)) = .

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is