Home
Class 12
MATHS
The largest intervgal lying in (- pi/2, ...

The largest intervgal lying in `(- pi/2, pi/2)` for which the function `[1f(x)=4^(-x^2) + cos^(-1) (x/2 -1) +log (cos x)]` is defined, is :

A

`[0,pi]`

B

`(-(pi)/(2),(pi)/(2))`

C

`[-(pi)/(4),(pi)/(2))`

D

`[0,(pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The largest interval lying in (-pi/2,pi/2) for which the function [f(x)=4^-x^2+cos^(-1)(x/2-1)+log(cosx)] is defined, is (1) [0,pi] (2) (-pi/2,pi/2) (3) [-pi/4,pi/2) (4) [0,pi/2)

The natural domain of the function f(x)=4^(-x)+cos^(-1)((x)/(2)-1)+log(cos x)

The function f(x)=cos^(-1)((|x|-3)/(2))+(log_(e)(4-x))^(-1) is defined for

The domain of the function f(x)=cos^(-1)[log_(2)(x/2)] is

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Let the function f(x) = tan^(1-) (sin x + cos x) be defined on [ 0, 2 pi] Then f(x) is

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

Function f[(1)/(2)pi, (3)/(2)pi] rarr [-1, 1], f(x) = cos x is