Home
Class 12
MATHS
The domain of the definition of the func...

The domain of the definition of the function
`f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x)` is

A

`(-1,0)cup(1,2)cup(2,oo)`

B

`(1,2)cup(2,oo)`

C

`(-1,0)cup(1,2)cup(3,oo)`

D

`(-2,-1)cup(-1,0)cup(2,oo)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of definition of the function f(x)=(9)/(9-x^(2)) +log_(10) (x^(3)-x) , is

Domain of definition of the functioni f(x)=3/(4-x^(2))+log_(10)(x^(3)-x) , is:

Find the domain of the function : f(x)=(3)/(4-x^(2))+log_(10)(x^(3)-x)

" The domain of the function "f(x)=(3)/(4-x^(2))+log_(10)(x^(3)-x)" is "

The domain of the definition of the function f(x)=sin^(-1)((|x|-5)/(2))+[log_(10)(6-x)]^(-1) is

The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-log_(10)(4-x) , is

The domain of definition of the function f(x)=sqrt(1+log_(6)(1-x)) is

The domain of definition of the function f(X)=x^((1)/(log_(10)x)) , is

The domain of definition of the function f(x)=sqrt(1+log_(0)(1-x)) is :