Home
Class 12
MATHS
Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2...

`Lim_(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))]` is equal to-

A

0

B

`-1//2`

C

`1//2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

lim_(n rarr oo)[(1)/(n)+(1)/(n+1)+(1)/(n+2)+.....+(1)/(2n)]

lim_ (n rarr oo n rarr equal to) [(1) / (1-n ^ (2)) + (2) / (1-n ^ (2)) + ...... + (n) / (1-n ^ (2))]

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)