Home
Class 12
MATHS
Let alpha and beta be the roots of ax^(2...

Let `alpha` and `beta` be the roots of `ax^(2) + bx + c=0`, then `lim_(x to alpha) (1- cos(ax^(2) + bx +c))/(x-alpha)^(2)` is euqal to:

A

0

B

`(1)/(2)(alpha-beta)^(2)`

C

`(a^(2))/(2)(alpha-beta)^(2)`

D

`-(a^(2))/(2)(alpha-beta)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) equal to

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

let alpha and beta be the roots of ax^(2)+bx+c then fin the value of (1)/(alpha)-(1)/(beta)

If alpha, beta are the zeroes of ax^(2)+bx+c , then evaluate : lim_(x to beta)(1-cos(ax^(2)+bx+c))/(x-beta)^(2) .

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim_(xto alpha)(1+ax^(2)+bx+c)^(2//x-alpha) is

If alpha and beta are roots of the equation ax^2+bx +c=0 , then lim_(xrarralpha) (1+ax^2+bx+c)^(1//x-alpha) , is