Home
Class 12
MATHS
underset(yto0)lim(sqrt(1+sqrt(1+y^4))-sq...

`underset(yto0)lim(sqrt(1+sqrt(1+y^4))-sqrt2)/y^4`

A

Exist and equals `(1)/(2sqrt2)`

B

Exists and equals `(1)/(2sqrt(2)(sqrt(2)+1))`

C

Exists and equals `(1)/(4sqrt2)`

D

Does not exist

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4

The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

The value of underset(x to 0)lim (sqrt(1+x^(2))-sqrt(1-x^(2)))/(x^(2)) is

a=lim_(xrightarrow0)(sqrt(1+sqrt(1+x^4))-sqrt2)/(x^4),b=lim_(xrightarrow0)(sin^2x)/(sqrt2-(sqrt(1+cosx)) find ab^3

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

If the value of underset(x to 0)lim (sqrt(2+x)-sqrt2)/(x)" is equal to "1/(a sqrt2) then 'a' equals

lim_(y->0)[(sqrt(1-y^2)-sqrt(1+y^2))/y^2]

underset(x to 0)(lim)(x(""_(e)^((sqrt(1+x^(2)+x^(4))-1)/x)-1))/(sqrt(1+x^(2)+x^(4))-1)