Home
Class 12
MATHS
underset(xto pi/4)lim(cot^3x-tanx)/(cos(...

`underset(xto pi/4)lim(cot^3x-tanx)/(cos(x+pi/4))` is

A

8

B

`8sqrt2`

C

`4sqrt2`

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

Find the limits: (a) underset(x to 0)lim (arc cos (1-x))/sqrtx (b) underset(x to pi//4)lim (ln tan x)/(1-cot x) (c ) underset(x to 0) lim(1)/(sin x) ln (1+a sin x)

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

lim_(x to pi/4)(tan^3x-tanx)/(cos(pi/4+x))=alpha and lim_(x to 0)(cosx)^cotx=beta .If alpha and beta are the roots of equation ax^2+bx-4 then ordered pair (a,b) is

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))