Home
Class 12
MATHS
lim(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^...

`lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n))` is equal to :

A

`tan^(-1)(3)`

B

`tan^(-1)(2)`

C

`pi/2`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))