Home
Class 12
MATHS
If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2...

If `f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):}` , then

A

`lim_(xto0+)f(x)=1`

B

`lim_(xto0-)f(x)=1`

C

f(x) is discontinuous at x=0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x)= {(x-1,x lt 0),(1/4,x=0) ,(x^2 , xgt0):} then lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are

Let f:RtoR , defined by f(x)={{:(3x-2,xlt0),(1",",x=0),(4x+1",",xgt0):} Find (i) f(2) (ii) f(-2) (iii) f(0) (iv) f(3.5)

Let g(x) = 1 + x – [x] and f(x)={:{(-1,if,xlt0),(0,if, x=0),(1,if,x gt0):} then Aax, fog(x) equals (where [ * ] represents greatest integer function).

If f(x)={{:(x+(1)/(2)",",xlt0),(2x+(3)/(4)",",xge0):},"then"[lim_(xrarr0) f(x)]="(where[.] denotes the greatest integer function)"

If f(x)={{:(x^(3)(1-x)",",xle0),(xlog_(e)x+3x",",xgt0):} then which of the following is not true?

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

Show that the Signum Function f:RrarrR , given by : f(x)={{:("1, if "xgt0),("0, if "x=0),("-1, if "xlt0):} is neither one-one nor onto.

For what value of k is the function f(x)={{:(2x+(1)/(4),xlt0),(k,x=0),((x+(1)/(2))^(2),xgt0):} continuous?