Home
Class 12
MATHS
If f(x) = [x] - [x/4], x in R where [x] ...

If `f(x) = [x] - [x/4], x in R` where [x] denotes the greatest integer function, then

A

`lim_(xto4^(-))f(x)` exists but `lim_(xto4+)f(x)` does not exist

B

f is continuous at x=4

C

`lim_(xto4^(+))f(x)` exists but `lim_(xto4^(-))f(x)` does not exist

D

Both `lim_(xto4^(-))f(x) and lim_(xto4^(+))f(x)` exist but are not equal

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f: R to R is defined by f(x)=x-[x]-(1)/(2) for all x in R , where [x] denotes the greatest integer function, then {x in R: f(x)=(1)/(2)} is equal to

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then