Home
Class 12
MATHS
If f(x)={{:(e^(x)", "xle0),(|1-x|", "xgt...

If `f(x)={{:(e^(x)", "xle0),(|1-x|", "xgt0):}`, then

A

f(x) is differentiable at x=0

B

f(x) is continuous at x=0

C

f(x) is differentiable at x=1

D

f(x) is continuous at x=1

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined as f(x)={{:(sin(x^2-3x)", "xle0),(6x+5x^2", "xgt0):} Then at x=0,f(x)

f(x) = {(1-2x", for " x le0),(1+2x", for "xgt0):} then int_(-1) ^(1) f(x) dx=

If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):} , then int_(0)^(2)f(x)dx is

If f(x)={(x","xle1,),(x^2+bx+c",",xgt1):} then find the values of b and c if f(x) is diferentiable at x=1.

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog and gof.

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))

If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(x+2) , then

Examine the continuity of the function : f(x)={{:(x+1" , "xle2),(2x-1" , "xgt2):} at x = 2.