Home
Class 12
MATHS
Let f(x) = {{:(-1,-2 le x lt 0),(x^2-1,0...

Let `f(x) = {{:(-1,-2 le x lt 0),(x^2-1,0 le x le 2):}` and `g(x)=|f(x)|+f(|x|)`. Then , in the interval (-2,2),g is

A

Not differentiable at two points

B

Not continuous

C

Not differentiable at one point

D

Differentiable at all points

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be defined on [-2,2[ such that f(x)={{:(,-1,-2 le x le 0),(,x-1,0 le x le 2):} and g(x)= f(|x|)+|f(x)| . Then g(x) is differentiable in the interval.

Let f(x) be defined on [-2,2] and is given by f(x)={{:(,-1,-2 le x le 0),(,x-1,0 lt x le 2):} and g(x) =f(|x|)+|f(x)| . Then g(x) is equal to

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f (x)= {{:(a-3x,,, -2 le x lt 0),( 4x+-3,,, 0 le x lt 1):},if f (x) has smallest valueat x=0, then range of a, is