Home
Class 12
MATHS
The function f(x)={{:((pi)/(4)+tan^(-1)x...

The function `f(x)={{:((pi)/(4)+tan^(-1)x",",|x|le1),((1)/(2)(|x|-1)",",|x|gt1):}` is :

A

Continuous on R-{1} and differentiable on R-{-1,1}

B

Both continuous and differentiable on R-{1}

C

Continuous on R-{-1} and differentiable on R-{-1,1}

D

Both continuous and differentiable on `R-{-1}`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the derivative of the function: f(x)={{:(,tan^(-1)x,|x| le1),(,(1)/(2)(|x|-1),|x|gt1):}

The domain of the derivation of the functions f(x) = {{:(tan^(_1) x", if " |x|le1),(" is"),(1/2(|x|-1)", if "|x| gt 1):}

Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):}, at =pi .

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} For x in(-1,00),f(x)+g(x) is

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} The graph of y=g(x) in its domain is broken at

Let f(x) be a continuous function fiven by f(x)={(2x",", |x|le1),(x^(2)+ax+b",",|x|gt1):},"then " If f(x) is continuous for all real x then the value of a^(2)+b^(2) is