Home
Class 12
MATHS
underset(x to a)(Lim) ((a+2x)^((1)/(3)) ...

`underset(x to a)(Lim) ((a+2x)^((1)/(3)) - (3x)^((1)/(3)))/((3a+x)^((1)/(3)) - (4x)^((1)/(3))) (a ne 0)` is equal to :

A

`(2/3)^(4/3)`

B

`(2/3)(2/9)^(1/3)`

C

`(2/9)^(4/3)`

D

`(2/9)(2/3)^(1/3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr a) (((a^2+2x^2)^(1/3) - (3x^2)^(1/3))/((3a^2+x^2)^(1/3)-(4x^2)^(1/3)))

lim_(x rarr0)((1+sin x)^((1)/(3))-(1-sin x)^((1)/(3)))/(x)

lim_(x rarr0)((1+sin x)^((1)/(3))-(1-sin x)^((1)/(3)))/(x)=

lim_(x rarr1)(x^((2)/(3))-2(x^((1)/(3))+1))/((x-1)^(2)) is equal to

underset( x rarr 1 )("lim")( root ( 3)(7+x^(3))- sqrt( 3 +x^(2)))/( x-1)

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to