Home
Class 12
MATHS
Let f:(0, oo)rarr(0, oo) be a differenti...

Let `f:(0, oo)rarr(0, oo)` be a differentiable function such that `f(1)=e` and `lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(1)(t))/(t-x)=0`.
If `f(x)=1`, then x is equal to :

A

`1/e`

B

`2e`

C

`1/(2e)`

D

`e`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :

Let f(x) be differentiable on the interval (0,oo) such that f(1)=1 and lim_(t rarr x)(t^(2)f(x)-x^(2)f(t))/(t-x)=1 for each x>0 Then f(x)=

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f:(0,oo)rarr(0,oo) be a differentiable function satisfying,x int_(x)^(x)(1-t)f(t)dt=int_(0)^(x)tf(t)dtx in R^(+) and f(1)=1 Determine f(x)

If lim_(t rarr x)(x^2f^2(t)-t^2f^2(x))/(t-x)=0 and f(1)=e then solution of f(x)=1 is

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=