Home
Class 12
MATHS
lim(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/...

`lim_(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n)` is equal to :

A

`1/2`

B

`1/e`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to

lim_ (n rarr oo) (e ^ (n)) / ((1+ (1) / (n)) ^ (n ^ (2))) equals

lim_(n to oo) ((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to