Home
Class 12
MATHS
f(x) is differentiable function at x=a s...

`f(x)` is differentiable function at `x=a` such that `f'(a)=2 , f(a)=4.` Find `lim_(xrarra) (xf(a)-af(x))/(x-a)`

A

`2a+4`

B

`4-2a`

C

`2a-4`

D

`a+4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be twice differentiable function such that f'(0) =2 , then, lim_(xrarr0) (2f(x)-3f(2x)+f(4x))/(x^2) , is

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

Let f(x) be diferentiable function on the interval (-oo,0) such that f(1)=5 and lim_(a to x)(af(x)-xf(a))/(a-x)=2, for all x in R. Then which of the following alternative(s) is/are correct?

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(x) is differentiable at x=a, find lim_(x rarr a)(x^(2)f(a)-a^(2)f(x))/(x-a)