Home
Class 9
MATHS
sqrt(3xx5^(- 3))-:(3^(- 1))^(1/3)sqrt(5)...

`sqrt(3xx5^(- 3))-:(3^(- 1))^(1/3)sqrt(5)**(3xx5^6)^(1/6) =3/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sqrt(3x5^(-3))-:3^(-1)3sqrt(5))x3x5^(6)6=(3)/(5)

Prove that: (sqrt(3\ xx\ 5^(-3))\ -:root(3)(3^(-1))\ sqrt(5))\ xx\ (3\ xx\ 5^6)^(1/6)\ =3/5

(-2/3)xx(3/5)+(5/2)-(3/5)xx(1/6)

Simplify : (3^(-3)xx6^(2)xx sqrt(98))/(5^(2)xx((1)/(25))^((1)/(3))xx(15)^(-(4)/(3))xx3^((1)/(3)))

(2)/(sqrt(5)+sqrt(3))-(3)/(sqrt(6)+sqrt(3))+(1)/(sqrt(6)+sqrt(5))=?

(2^((1)/(2))xx3^((1)/(3))xx4^((1)/(4)))/(10^(-(1)/(5))xx5^((3)/(5)))-:(3^((4)/(3))xx5^(-(7)/(5)))/(4^(-(3)/(5))xx6)=10

The value of (sqrt(3)^(1/3)+(3^(5//6))i)^(3) is (where i=sqrt(-1) )

6(6)/(6)xx5(1)/(3)+17(2)/(3)xx4(1)/(4)=?

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

((sqrt(5)-3))/((sqrt(5)-3))times((sqrt(5)-3))/((sqrt(5)+3))