Home
Class 12
MATHS
If curve y=f(x) satisfying differential ...

If curve `y=f(x)` satisfying differential equation `dy/dx+(1/(x^2-1))y=((x-1)/(x+1))^(1/2)` such that `f(2)=sqrt3` then the value of `sqrt7 f(8)` is

A

`7-3ln3`

B

`21-6ln2`

C

`21-6ln3`

D

`7+3ln2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the value of \(\sqrt{7} f(8)\), we will follow these steps: ### Step 1: Write down the differential equation The given differential equation is: \[ \frac{dy}{dx} + \frac{1}{x^2 - 1} y = \sqrt{\frac{x - 1}{x + 1}} \] ### Step 2: Identify \(p(x)\) and \(q(x)\) From the standard form of a linear differential equation \(\frac{dy}{dx} + p(x)y = q(x)\), we identify: - \(p(x) = \frac{1}{x^2 - 1}\) - \(q(x) = \sqrt{\frac{x - 1}{x + 1}}\) ### Step 3: Find the integrating factor The integrating factor \(I(x)\) is given by: \[ I(x) = e^{\int p(x) \, dx} = e^{\int \frac{1}{x^2 - 1} \, dx} \] To compute this integral, we can use partial fractions: \[ \frac{1}{x^2 - 1} = \frac{1}{(x - 1)(x + 1)} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \] Thus, \[ \int \frac{1}{x^2 - 1} \, dx = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C = \frac{1}{2} \ln \left|\frac{x - 1}{x + 1}\right| + C \] Therefore, the integrating factor is: \[ I(x) = e^{\frac{1}{2} \ln \left|\frac{x - 1}{x + 1}\right|} = \left(\frac{x - 1}{x + 1}\right)^{1/2} \] ### Step 4: Multiply through by the integrating factor Multiply the entire differential equation by \(I(x)\): \[ \left(\frac{x - 1}{x + 1}\right)^{1/2} \frac{dy}{dx} + \left(\frac{x - 1}{x + 1}\right)^{1/2} \frac{1}{x^2 - 1} y = \left(\frac{x - 1}{x + 1}\right)^{1/2} \sqrt{\frac{x - 1}{x + 1}} \] This simplifies to: \[ \left(\frac{x - 1}{x + 1}\right)^{1/2} \frac{dy}{dx} + \left(\frac{x - 1}{x + 1}\right)^{1/2} \frac{1}{x^2 - 1} y = \frac{x - 1}{x + 1} \] ### Step 5: Integrate both sides The left side can be integrated as: \[ \frac{d}{dx}\left(y \left(\frac{x - 1}{x + 1}\right)^{1/2}\right) = \frac{x - 1}{x + 1} \] Integrating both sides gives: \[ y \left(\frac{x - 1}{x + 1}\right)^{1/2} = \int \frac{x - 1}{x + 1} \, dx \] Calculating the integral: \[ \int \frac{x - 1}{x + 1} \, dx = x - 2 \ln|x + 1| + C \] Thus, we have: \[ y \left(\frac{x - 1}{x + 1}\right)^{1/2} = x - 2 \ln|x + 1| + C \] ### Step 6: Solve for \(y\) Rearranging gives: \[ y = \frac{x - 2 \ln|x + 1| + C}{\left(\frac{x - 1}{x + 1}\right)^{1/2}} \] ### Step 7: Use the initial condition We know \(f(2) = \sqrt{3}\): \[ \sqrt{3} = \frac{2 - 2 \ln(3) + C}{\sqrt{\frac{1}{3}}} \] Solving for \(C\) gives: \[ C = \sqrt{3} \cdot \sqrt{3} + 2 \ln(3) - 2 = 3 + 2 \ln(3) - 2 = 1 + 2 \ln(3) \] ### Step 8: Find \(f(8)\) Substituting \(x = 8\): \[ f(8) = \frac{8 - 2 \ln(9) + (1 + 2 \ln(3))}{\sqrt{\frac{7}{9}}} \] This simplifies to: \[ f(8) = \frac{8 - 2 \ln(9) + 1 + 2 \ln(3)}{\frac{\sqrt{7}}{3}} = 3 \cdot (9 - 2 \ln(9) + 2 \ln(3)) \] ### Step 9: Calculate \(\sqrt{7} f(8)\) Finally, we compute: \[ \sqrt{7} f(8) = \sqrt{7} \cdot 3 \cdot (9 - 2 \ln(9) + 2 \ln(3)) \] ### Final Result The value of \(\sqrt{7} f(8)\) is: \[ \sqrt{7} f(8) = 6 \ln(3) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

Let y=f(x) satisfy the differential equation (dy)/(dx)=(x+y)/(x),y(1)=1, then y((1)/(e)) is equal

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to

If y(x) is a solution of differential equation sqrt(1-x^2) dy/dx + sqrt(1-y^2) = 0 such that y(1/2) = sqrt3/2 , then

If a curve y=f(x) satisfy the differential equation 2x^2dy=(2xy+y^2)dx and passes (1,2) the find f(1/2)

If y=f(x) satisfy differential equation ( dy )/(dx)-y=e^(x) with f(0)=1 then value of f'(0) is

A function y=f(x) satisfies the differential equation (dy)/(dx)+x^(2)y+2x=0,f(1)=1 then the value of f(1) is-

The function y=f(x) is the solution of the differential equation (dy)/(dx)=(2xy+y^(2))/(2x^(2)) If f(1)=2, then the value of f((1)/(4)) is

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If 6/(3^12)+10/(3^11)+20/3^10+40/3^9+. . .+10240/3^1=2^m.n then the va...

    Text Solution

    |

  2. If OAB is a triangle park and OP is a vertical tower such that AB=16, ...

    Text Solution

    |

  3. If curve y=f(x) satisfying differential equation dy/dx+(1/(x^2-1))y=((...

    Text Solution

    |

  4. If A and B are two 3xx3 order matrices such that A is symmetric and B ...

    Text Solution

    |

  5. If OA and OB are tangents to circle (x-2)^2+y^2=1 from origin (O) then...

    Text Solution

    |

  6. Consider the following statements P:Ramesh is singing Q:Ramesh is ou...

    Text Solution

    |

  7. If x(t)=2sqrt2 cost sqrt(sin 2t) and y(t)=2sqrt2 sint sqrt(sin 2t), wh...

    Text Solution

    |

  8. There are 4 girls and 6 boys in a class . Three student are selected r...

    Text Solution

    |

  9. Let veca=3hati+hatj , vecb=hati+2hatj+hatk and veca xx (vecb xx vecc)=...

    Text Solution

    |

  10. If lim(x to 0)(alpha e^x +beta e^(-x)+gamma sinx)/(x sin^2x)=2/3, then...

    Text Solution

    |

  11. If A={1,2,. . .,60} and B is relation on A defined as B={(x,y):y=pq ,"...

    Text Solution

    |

  12. A matrix of 3xx3 order, should be filled either by 0 or 1 and sum of a...

    Text Solution

    |

  13. Let a1,a2,a3 , . . . an are in A.P and sum(r=1)^oo a^r/2^r=4, then 4a2...

    Text Solution

    |

  14. If f(x)=3^((x^2-2)^3)+4 and P:f(x) attains maximum value at x=0 Q:f(...

    Text Solution

    |

  15. If 1/(2.3.4)+1/(3.4.5)+. . .+1/(100.101.102)=k/101 then 34k is equal t...

    Text Solution

    |

  16. Let f(x)=abs((x-1)) cos abs(x-2) sin abs(x-1)+abs(x-3) abs(x^2-5x+4) ....

    Text Solution

    |

  17. Let A and B are two 3xx3 non-zero real matrices and AB=0, then which o...

    Text Solution

    |

  18. If abs(x-1) le y le sqrt(5-x^2), then the area of region bounded by th...

    Text Solution

    |

  19. The straight line y=mx+c is a focal length chord of parabola y^2=4x , ...

    Text Solution

    |

  20. Let S={1,2,3,. . . ,2022} and A={(a,b):a,b in S and "HCF of b and 2022...

    Text Solution

    |