Home
Class 12
MATHS
If x(t)=2sqrt2 cost sqrt(sin 2t) and y(t...

If `x(t)=2sqrt2 cost sqrt(sin 2t) and y(t)=2sqrt2 sint sqrt(sin 2t)`, where `t in (o,pi/2)` then the value of `{(1+(dy/dx)^2)/((d^2 y)/dx^2)}` at `x=pi/4`

A

`-1/2`

B

`1/2`

C

2

D

`-2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}}\) at \(x = \frac{\pi}{4}\) given the parametric equations: \[ x(t) = 2\sqrt{2} \cos(t) \sqrt{\sin(2t)} \] \[ y(t) = 2\sqrt{2} \sin(t) \sqrt{\sin(2t)} \] ### Step 1: Find \(\frac{dx}{dt}\) and \(\frac{dy}{dt}\) First, we differentiate \(x(t)\) and \(y(t)\) with respect to \(t\). \[ \frac{dx}{dt} = \frac{d}{dt} \left( 2\sqrt{2} \cos(t) \sqrt{\sin(2t)} \right) \] Using the product rule: \[ \frac{dx}{dt} = 2\sqrt{2} \left( -\sin(t) \sqrt{\sin(2t)} + \cos(t) \cdot \frac{1}{2\sqrt{\sin(2t)}} \cdot 2\cos(2t) \right) \] This simplifies to: \[ \frac{dx}{dt} = 2\sqrt{2} \left( -\sin(t) \sqrt{\sin(2t)} + \frac{\cos(t) \cos(2t)}{\sqrt{\sin(2t)}} \right) \] Now for \(y(t)\): \[ \frac{dy}{dt} = \frac{d}{dt} \left( 2\sqrt{2} \sin(t) \sqrt{\sin(2t)} \right) \] Using the product rule again: \[ \frac{dy}{dt} = 2\sqrt{2} \left( \cos(t) \sqrt{\sin(2t)} + \sin(t) \cdot \frac{1}{2\sqrt{\sin(2t)}} \cdot 2\cos(2t) \right) \] This simplifies to: \[ \frac{dy}{dt} = 2\sqrt{2} \left( \cos(t) \sqrt{\sin(2t)} + \frac{\sin(t) \cos(2t)}{\sqrt{\sin(2t)}} \right) \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2\sqrt{2} \left( \cos(t) \sqrt{\sin(2t)} + \frac{\sin(t) \cos(2t)}{\sqrt{\sin(2t)}} \right)}{2\sqrt{2} \left( -\sin(t) \sqrt{\sin(2t)} + \frac{\cos(t) \cos(2t)}{\sqrt{\sin(2t)}} \right)} \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) Using the formula: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] This requires calculating \(\frac{d}{dt}\left(\frac{dy}{dx}\right)\) and \(\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}}\). ### Step 4: Evaluate at \(t = \frac{\pi}{4}\) At \(t = \frac{\pi}{4}\): - Calculate \(x\) and \(y\) to confirm \(x = \frac{\pi}{4}\). - Substitute \(t = \frac{\pi}{4}\) into the expressions for \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\) to find their values. ### Step 5: Substitute into the expression Finally, substitute the values of \(\frac{dy}{dx}\) and \(\frac{d^2y}{dx^2}\) into the expression: \[ \frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

x=sqrt(sin 2t),y=sqrt(cos 2 t)

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t),then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If OA and OB are tangents to circle (x-2)^2+y^2=1 from origin (O) then...

    Text Solution

    |

  2. Consider the following statements P:Ramesh is singing Q:Ramesh is ou...

    Text Solution

    |

  3. If x(t)=2sqrt2 cost sqrt(sin 2t) and y(t)=2sqrt2 sint sqrt(sin 2t), wh...

    Text Solution

    |

  4. There are 4 girls and 6 boys in a class . Three student are selected r...

    Text Solution

    |

  5. Let veca=3hati+hatj , vecb=hati+2hatj+hatk and veca xx (vecb xx vecc)=...

    Text Solution

    |

  6. If lim(x to 0)(alpha e^x +beta e^(-x)+gamma sinx)/(x sin^2x)=2/3, then...

    Text Solution

    |

  7. If A={1,2,. . .,60} and B is relation on A defined as B={(x,y):y=pq ,"...

    Text Solution

    |

  8. A matrix of 3xx3 order, should be filled either by 0 or 1 and sum of a...

    Text Solution

    |

  9. Let a1,a2,a3 , . . . an are in A.P and sum(r=1)^oo a^r/2^r=4, then 4a2...

    Text Solution

    |

  10. If f(x)=3^((x^2-2)^3)+4 and P:f(x) attains maximum value at x=0 Q:f(...

    Text Solution

    |

  11. If 1/(2.3.4)+1/(3.4.5)+. . .+1/(100.101.102)=k/101 then 34k is equal t...

    Text Solution

    |

  12. Let f(x)=abs((x-1)) cos abs(x-2) sin abs(x-1)+abs(x-3) abs(x^2-5x+4) ....

    Text Solution

    |

  13. Let A and B are two 3xx3 non-zero real matrices and AB=0, then which o...

    Text Solution

    |

  14. If abs(x-1) le y le sqrt(5-x^2), then the area of region bounded by th...

    Text Solution

    |

  15. The straight line y=mx+c is a focal length chord of parabola y^2=4x , ...

    Text Solution

    |

  16. Let S={1,2,3,. . . ,2022} and A={(a,b):a,b in S and "HCF of b and 2022...

    Text Solution

    |

  17. The straight line L passing through point of intersection of line bx+1...

    Text Solution

    |

  18. Tower of height h, angle of elevation from point A is alpha . Let B be...

    Text Solution

    |

  19. t=sqrtx+4 then find ((dx)/(dt))(t=4)

    Text Solution

    |

  20. 1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+1/((180-a)(200-a))=1/256 then ...

    Text Solution

    |