Home
Class 12
MATHS
Let veca=3hati+hatj , vecb=hati+2hatj+ha...

Let `veca=3hati+hatj , vecb=hati+2hatj+hatk and veca xx (vecb xx vecc)=vecb + lamda vecc, vecb` is non parallel to `vecc`, then value of `lamda` is:

A

5

B

-5

C

1

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) given the vectors \( \vec{a} \) and \( \vec{b} \), and the equation \( \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c} \). ### Step-by-Step Solution: 1. **Identify the Vectors**: \[ \vec{a} = 3\hat{i} + \hat{j} \] \[ \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] 2. **Use the Vector Triple Product Identity**: The vector triple product identity states that: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this to our case: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 3. **Set Up the Equation**: From the problem statement, we have: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c} \] Thus, we can equate: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \vec{b} + \lambda \vec{c} \] 4. **Rearranging the Equation**: Rearranging gives: \[ (\vec{a} \cdot \vec{c}) \vec{b} - \vec{b} = \lambda \vec{c} + (\vec{a} \cdot \vec{b}) \vec{c} \] This simplifies to: \[ ((\vec{a} \cdot \vec{c}) - 1) \vec{b} = (\lambda + \vec{a} \cdot \vec{b}) \vec{c} \] 5. **Finding the Dot Products**: - Calculate \( \vec{a} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = (3\hat{i} + \hat{j}) \cdot (\hat{i} + 2\hat{j} + \hat{k}) = 3 \cdot 1 + 1 \cdot 2 + 0 = 3 + 2 = 5 \] 6. **Substituting Back**: Substitute \( \vec{a} \cdot \vec{b} = 5 \): \[ ((\vec{a} \cdot \vec{c}) - 1) \vec{b} = (\lambda + 5) \vec{c} \] 7. **Non-parallel Condition**: Since \( \vec{b} \) is non-parallel to \( \vec{c} \), we can equate the coefficients: \[ (\vec{a} \cdot \vec{c}) - 1 = 0 \quad \text{and} \quad \lambda + 5 = 0 \] 8. **Solving for \( \lambda \)**: From \( \lambda + 5 = 0 \): \[ \lambda = -5 \] ### Final Answer: The value of \( \lambda \) is \( -5 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvecc=lamda veca+mu vecb , then lamda+mu=

If veca = 3 hati -4 hatj and vecb =- 2 hati + 3 hatk, what is vecc=veca xx vecb ?

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=2hati+2hatj+3hatk, vecb=-hati+2hatjhatk and vecc=3hati+hatj such that veca+lamdavecb is perpendicular to vecc then the find the value of lamda.

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

veca=hati+hatj+hatk , vecb=hati-hatk , veca xx vecc = vecb , veca*vecc=3 then Find [(veca,vecb,vecc)]

Let veca=hati+2hatj+3hatk , vecb=2hati+3hatj+hatk, vecc=hatk+hati and (vecx xx vecb)=(veca xx vecc)xxvecb . If vecx .veca=0 , then |vecx| is equal to use sqrt3=1.73 )

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If x(t)=2sqrt2 cost sqrt(sin 2t) and y(t)=2sqrt2 sint sqrt(sin 2t), wh...

    Text Solution

    |

  2. There are 4 girls and 6 boys in a class . Three student are selected r...

    Text Solution

    |

  3. Let veca=3hati+hatj , vecb=hati+2hatj+hatk and veca xx (vecb xx vecc)=...

    Text Solution

    |

  4. If lim(x to 0)(alpha e^x +beta e^(-x)+gamma sinx)/(x sin^2x)=2/3, then...

    Text Solution

    |

  5. If A={1,2,. . .,60} and B is relation on A defined as B={(x,y):y=pq ,"...

    Text Solution

    |

  6. A matrix of 3xx3 order, should be filled either by 0 or 1 and sum of a...

    Text Solution

    |

  7. Let a1,a2,a3 , . . . an are in A.P and sum(r=1)^oo a^r/2^r=4, then 4a2...

    Text Solution

    |

  8. If f(x)=3^((x^2-2)^3)+4 and P:f(x) attains maximum value at x=0 Q:f(...

    Text Solution

    |

  9. If 1/(2.3.4)+1/(3.4.5)+. . .+1/(100.101.102)=k/101 then 34k is equal t...

    Text Solution

    |

  10. Let f(x)=abs((x-1)) cos abs(x-2) sin abs(x-1)+abs(x-3) abs(x^2-5x+4) ....

    Text Solution

    |

  11. Let A and B are two 3xx3 non-zero real matrices and AB=0, then which o...

    Text Solution

    |

  12. If abs(x-1) le y le sqrt(5-x^2), then the area of region bounded by th...

    Text Solution

    |

  13. The straight line y=mx+c is a focal length chord of parabola y^2=4x , ...

    Text Solution

    |

  14. Let S={1,2,3,. . . ,2022} and A={(a,b):a,b in S and "HCF of b and 2022...

    Text Solution

    |

  15. The straight line L passing through point of intersection of line bx+1...

    Text Solution

    |

  16. Tower of height h, angle of elevation from point A is alpha . Let B be...

    Text Solution

    |

  17. t=sqrtx+4 then find ((dx)/(dt))(t=4)

    Text Solution

    |

  18. 1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+1/((180-a)(200-a))=1/256 then ...

    Text Solution

    |

  19. Let z=2+3i then value of z^5+(barz)^5 is

    Text Solution

    |

  20. (p wedge q) to (p wedge r) is equivalent to

    Text Solution

    |