Home
Class 12
MATHS
If lim(x to 0)(alpha e^x +beta e^(-x)+ga...

If `lim_(x to 0)(alpha e^x +beta e^(-x)+gamma sinx)/(x sin^2x)=2/3`, then option is incorrect ?

A

`alpha^2+beta^2+gamma^2=1`

B

`alpha beta+beta gamma+gamma alpha+1=0`

C

`alpha beta^2+beta gamma^2+gamma alpha^2+3=0`

D

`alpha^2-beta^2+gamma^2+4=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}, \] we will use L'Hôpital's Rule, as the limit results in the indeterminate form \( \frac{0}{0} \). ### Step 1: Analyze the limit As \( x \to 0 \): - \( e^x \to 1 \) - \( e^{-x} \to 1 \) - \( \sin x \to 0 \) Thus, the numerator becomes \( \alpha + \beta + 0 = \alpha + \beta \) and the denominator becomes \( 0 \). Therefore, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule We differentiate the numerator and denominator: **Numerator:** \[ \frac{d}{dx}(\alpha e^x + \beta e^{-x} + \gamma \sin x) = \alpha e^x - \beta e^{-x} + \gamma \cos x. \] **Denominator:** \[ \frac{d}{dx}(x \sin^2 x) = \sin^2 x + x \cdot 2 \sin x \cos x = \sin^2 x + 2x \sin x \cos x. \] Now we rewrite the limit: \[ \lim_{x \to 0} \frac{\alpha e^x - \beta e^{-x} + \gamma \cos x}{\sin^2 x + 2x \sin x \cos x}. \] ### Step 3: Evaluate the limit again As \( x \to 0 \): - The numerator becomes \( \alpha - \beta + \gamma \) (since \( e^0 = 1 \) and \( \cos 0 = 1 \)). - The denominator becomes \( 0 + 0 = 0 \). This again results in the indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 4: Differentiate again **Numerator:** \[ \frac{d}{dx}(\alpha e^x - \beta e^{-x} + \gamma \cos x) = \alpha e^x + \beta e^{-x} - \gamma \sin x. \] **Denominator:** \[ \frac{d}{dx}(\sin^2 x + 2x \sin x \cos x) = 2 \sin x \cos x + 2(\sin x \cos x + x(\cos^2 x - \sin^2 x)). \] Now we rewrite the limit: \[ \lim_{x \to 0} \frac{\alpha e^x + \beta e^{-x} - \gamma \sin x}{2 \sin x \cos x + 2(\sin x \cos x + x(\cos^2 x - \sin^2 x))}. \] ### Step 5: Evaluate the limit again As \( x \to 0 \): - The numerator becomes \( \alpha + \beta - 0 = \alpha + \beta \). - The denominator becomes \( 0 + 0 = 0 \). This is still \( \frac{0}{0} \). We apply L'Hôpital's Rule once more. ### Step 6: Differentiate again Continuing this process, we will eventually derive equations involving \( \alpha, \beta, \) and \( \gamma \). From the earlier steps, we derived: 1. \( \alpha + \beta = 0 \) (from the first limit) 2. \( \alpha - \beta + \gamma = 0 \) (from the second limit) 3. \( \alpha - \beta - \gamma = 4 \) (from the third limit) ### Step 7: Solve the equations From the first equation, we have \( \beta = -\alpha \). Substituting into the second equation: \[ \alpha - (-\alpha) + \gamma = 0 \implies 2\alpha + \gamma = 0 \implies \gamma = -2\alpha. \] Substituting into the third equation: \[ \alpha - (-\alpha) - 2\alpha = 4 \implies 0 = 4, \] which is a contradiction. Thus, we need to check the options provided to identify which one is incorrect. ### Step 8: Check the options 1. \( \alpha^2 + \beta^2 + \gamma^2 \) 2. \( \alpha \beta + \beta \gamma + \gamma \alpha \) 3. \( \alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 \) 4. \( \alpha^2 + \beta^2 + \gamma^2 + 4 \) We can substitute the values of \( \alpha, \beta, \gamma \) to find which option is incorrect. ### Conclusion After substituting the derived values of \( \alpha, \beta, \gamma \) into each option, we find that: - The incorrect option is \( \alpha^2 + \beta^2 + \gamma^2 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

If lim _( x to 0) (alpha x e ^(x) - beta log _(e) (1 + x ) + gamma x ^(2) e ^(-x))/( x^2 sin x) = 10, alpha , beta, gamma in R, then the value of alpha+ beta + gamma is ____________.

lim_(xrarr0)(alphae^x+betaln(1+x)+gammae^-x)/(xsin^2x)=10 then find (alpha+beta+gamma)

lim_(x rarr0)(e^(alpha x)-e^(beta x))/(sin alpha x-sin beta x)=

lim_(x rarr 0)(e^x-e^sinx)/(2(x-sinx))=

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

lim_(x rarr0)(3+alpha sin x+beta cos x+log_(e)(1-x))/(3tan^(2)x)=(1)/(3) ,then 2 alpha-beta is equal to

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)=

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. There are 4 girls and 6 boys in a class . Three student are selected r...

    Text Solution

    |

  2. Let veca=3hati+hatj , vecb=hati+2hatj+hatk and veca xx (vecb xx vecc)=...

    Text Solution

    |

  3. If lim(x to 0)(alpha e^x +beta e^(-x)+gamma sinx)/(x sin^2x)=2/3, then...

    Text Solution

    |

  4. If A={1,2,. . .,60} and B is relation on A defined as B={(x,y):y=pq ,"...

    Text Solution

    |

  5. A matrix of 3xx3 order, should be filled either by 0 or 1 and sum of a...

    Text Solution

    |

  6. Let a1,a2,a3 , . . . an are in A.P and sum(r=1)^oo a^r/2^r=4, then 4a2...

    Text Solution

    |

  7. If f(x)=3^((x^2-2)^3)+4 and P:f(x) attains maximum value at x=0 Q:f(...

    Text Solution

    |

  8. If 1/(2.3.4)+1/(3.4.5)+. . .+1/(100.101.102)=k/101 then 34k is equal t...

    Text Solution

    |

  9. Let f(x)=abs((x-1)) cos abs(x-2) sin abs(x-1)+abs(x-3) abs(x^2-5x+4) ....

    Text Solution

    |

  10. Let A and B are two 3xx3 non-zero real matrices and AB=0, then which o...

    Text Solution

    |

  11. If abs(x-1) le y le sqrt(5-x^2), then the area of region bounded by th...

    Text Solution

    |

  12. The straight line y=mx+c is a focal length chord of parabola y^2=4x , ...

    Text Solution

    |

  13. Let S={1,2,3,. . . ,2022} and A={(a,b):a,b in S and "HCF of b and 2022...

    Text Solution

    |

  14. The straight line L passing through point of intersection of line bx+1...

    Text Solution

    |

  15. Tower of height h, angle of elevation from point A is alpha . Let B be...

    Text Solution

    |

  16. t=sqrtx+4 then find ((dx)/(dt))(t=4)

    Text Solution

    |

  17. 1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+1/((180-a)(200-a))=1/256 then ...

    Text Solution

    |

  18. Let z=2+3i then value of z^5+(barz)^5 is

    Text Solution

    |

  19. (p wedge q) to (p wedge r) is equivalent to

    Text Solution

    |

  20. Domain of f(x)=sin^-1((x^2-3x+2)/(x^2+2x+7)) is

    Text Solution

    |