Home
Class 12
MATHS
Let a1,a2,a3 , . . . an are in A.P and s...

Let `a_1,a_2,a_3 , . . . a_n` are in A.P and `sum_(r=1)^oo a^r/2^r=4`, then `4a_2` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(4a_2\) given that the sequence \(a_1, a_2, a_3, \ldots, a_n\) is in arithmetic progression (A.P.) and the sum \[ \sum_{r=1}^{\infty} \frac{a^r}{2^r} = 4. \] ### Step-by-step Solution: 1. **Understanding the Sum**: The sum can be rewritten as: \[ \sum_{r=1}^{\infty} \frac{a_r}{2^r} = \frac{a_1}{2^1} + \frac{a_2}{2^2} + \frac{a_3}{2^3} + \ldots \] This is an infinite series where \(a_r\) are the terms of the A.P. 2. **Expressing \(a_r\)**: Since \(a_1, a_2, a_3, \ldots\) are in A.P., we can express \(a_r\) as: \[ a_r = a_1 + (r-1)d, \] where \(d\) is the common difference. 3. **Substituting \(a_r\) into the Sum**: Substitute \(a_r\) into the sum: \[ \sum_{r=1}^{\infty} \frac{a_1 + (r-1)d}{2^r} = 4. \] This can be split into two separate sums: \[ \sum_{r=1}^{\infty} \frac{a_1}{2^r} + \sum_{r=1}^{\infty} \frac{(r-1)d}{2^r} = 4. \] 4. **Calculating the First Sum**: The first sum is a geometric series: \[ \sum_{r=1}^{\infty} \frac{a_1}{2^r} = a_1 \sum_{r=1}^{\infty} \left(\frac{1}{2}\right)^r = a_1 \cdot \frac{\frac{1}{2}}{1 - \frac{1}{2}} = a_1. \] 5. **Calculating the Second Sum**: The second sum can be calculated using the formula for the sum of an infinite series: \[ \sum_{r=1}^{\infty} \frac{(r-1)d}{2^r} = d \sum_{r=1}^{\infty} \frac{(r-1)}{2^r}. \] The sum \(\sum_{r=1}^{\infty} \frac{(r-1)}{2^r}\) can be derived from the formula for the sum of an infinite series: \[ \sum_{r=1}^{\infty} \frac{r}{x^r} = \frac{x}{(x-1)^2}. \] For \(x = 2\): \[ \sum_{r=1}^{\infty} \frac{r}{2^r} = \frac{2}{(2-1)^2} = 2. \] Thus, \[ \sum_{r=1}^{\infty} \frac{(r-1)}{2^r} = 2 - 1 = 1. \] Therefore, the second sum becomes: \[ d \cdot 1 = d. \] 6. **Combining the Results**: Now we have: \[ a_1 + d = 4. \] 7. **Finding \(4a_2\)**: We know that: \[ a_2 = a_1 + d. \] Therefore, \[ 4a_2 = 4(a_1 + d) = 4 \cdot 4 = 16. \] ### Final Answer: \[ 4a_2 = 16. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3……..a_n are in H.P. and f(k) = sum_(r=1)^na_r-a_k then (f(1))/a_1, (f(2))/a_3 ….f(n)/a_n are (A) A.P. (B) G.P. (C) H.P. (D) none of these

Let a_1,a_2 ,a_3 …..be in A.P. and a_p, a_q , a_r be in G.P. Then a_q : a_p is equal to :

sum_(n=1)^20 1/(a_n a_(n+1))=4/9 , a_1,a_2,a_3 . . . are in A.P and also sum of first 21 terms of A.P is 189 then find the value of a_6a_16

a_1, a_2, a_3 …..a_9 are in GP where a_1 lt 0, a_1 + a_2 = 4, a_3 + a_4 = 16 , if sum_(i=1)^9 a_i = 4 lambda then lambda is equal to

Let a_1,a_2,a_3 ......, a_n are in A.P. such that a_n = 100 , a_40-a_39=3/5 then 15^(th) term of A.P. from end is

If a_1,a_2, a_3………. are in H.P. and f(k) =sum_(r=1)^n a_r-a_k, the a_1/(f(1)), a_2/(f(2)), a_3/(f(3)), …….., a_n/(f(n)) are in (A) A.P. (B) G.P (C) H.P. (D) none of these

If a_1,a_2,a_3,...,a_n are in AP and a_i ne (2k-1)pi/2 for all i , find the sum seca_1*seca_2+seca_2*seca_3+seca_3*seca_4+...+seca_(n-1)*seca_n .

If a_1,a_2,a_3,a_4 are in H.P. then 1/(a_1 a_4) sum_(r=1)^3 a_r a_(r+1) is a root of (A) x^2-2x-15=0 (B) x^2+2x+15=0 (C) x^2+2x-15=0 (D) x^2-2x+15=0

If a_1,a_2,a_3,. . . ,a_n. . . are in A.P. such that a_4−a_7+a_10=m , then sum of the first 13 terms of the A.P.is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. If A={1,2,. . .,60} and B is relation on A defined as B={(x,y):y=pq ,"...

    Text Solution

    |

  2. A matrix of 3xx3 order, should be filled either by 0 or 1 and sum of a...

    Text Solution

    |

  3. Let a1,a2,a3 , . . . an are in A.P and sum(r=1)^oo a^r/2^r=4, then 4a2...

    Text Solution

    |

  4. If f(x)=3^((x^2-2)^3)+4 and P:f(x) attains maximum value at x=0 Q:f(...

    Text Solution

    |

  5. If 1/(2.3.4)+1/(3.4.5)+. . .+1/(100.101.102)=k/101 then 34k is equal t...

    Text Solution

    |

  6. Let f(x)=abs((x-1)) cos abs(x-2) sin abs(x-1)+abs(x-3) abs(x^2-5x+4) ....

    Text Solution

    |

  7. Let A and B are two 3xx3 non-zero real matrices and AB=0, then which o...

    Text Solution

    |

  8. If abs(x-1) le y le sqrt(5-x^2), then the area of region bounded by th...

    Text Solution

    |

  9. The straight line y=mx+c is a focal length chord of parabola y^2=4x , ...

    Text Solution

    |

  10. Let S={1,2,3,. . . ,2022} and A={(a,b):a,b in S and "HCF of b and 2022...

    Text Solution

    |

  11. The straight line L passing through point of intersection of line bx+1...

    Text Solution

    |

  12. Tower of height h, angle of elevation from point A is alpha . Let B be...

    Text Solution

    |

  13. t=sqrtx+4 then find ((dx)/(dt))(t=4)

    Text Solution

    |

  14. 1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+1/((180-a)(200-a))=1/256 then ...

    Text Solution

    |

  15. Let z=2+3i then value of z^5+(barz)^5 is

    Text Solution

    |

  16. (p wedge q) to (p wedge r) is equivalent to

    Text Solution

    |

  17. Domain of f(x)=sin^-1((x^2-3x+2)/(x^2+2x+7)) is

    Text Solution

    |

  18. If f(x)={((ln(1+5x)-ln(1-alpha x))/x,x ne 0),(10,x=0):} is continuous ...

    Text Solution

    |

  19. The value of sum(r=1)^20 (r^2+1) r! is equal to

    Text Solution

    |

  20. If abs(veca+vecb)^2=absveca^2 + 2 absvecb^2 , veca.vecb=3 and abs(veca...

    Text Solution

    |