Home
Class 12
MATHS
1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+...

`1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+1/((180-a)(200-a))=1/256` then find the value of `a`

A

8

B

6

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{(20-a)(40-a)} + \frac{1}{(40-a)(60-a)} + \cdots + \frac{1}{(180-a)(200-a)} = \frac{1}{256} \] we will first analyze the left-hand side. ### Step 1: Identify the series The left-hand side consists of a series of fractions. The general term can be expressed as: \[ \frac{1}{(n-a)(n+20-a)} \] where \( n \) takes values from 20 to 180 in steps of 20 (i.e., 20, 40, 60, ..., 180). ### Step 2: Rewrite the series We can rewrite the series: \[ \sum_{n=20, n \text{ step } 20}^{180} \frac{1}{(n-a)(n+20-a)} \] This can be simplified using partial fractions: \[ \frac{1}{(n-a)(n+20-a)} = \frac{1}{20} \left( \frac{1}{n-a} - \frac{1}{n+20-a} \right) \] ### Step 3: Apply the partial fractions Substituting this back into the sum gives: \[ \frac{1}{20} \left( \left( \frac{1}{20-a} - \frac{1}{40-a} \right) + \left( \frac{1}{40-a} - \frac{1}{60-a} \right) + \cdots + \left( \frac{1}{180-a} - \frac{1}{200-a} \right) \right) \] ### Step 4: Simplify the series Notice that this is a telescoping series, where most terms cancel out: \[ \frac{1}{20} \left( \frac{1}{20-a} - \frac{1}{200-a} \right) \] ### Step 5: Set the equation Now, we set this equal to \(\frac{1}{256}\): \[ \frac{1}{20} \left( \frac{1}{20-a} - \frac{1}{200-a} \right) = \frac{1}{256} \] ### Step 6: Solve for \( a \) Multiplying both sides by 20 gives: \[ \frac{1}{20-a} - \frac{1}{200-a} = \frac{20}{256} = \frac{5}{64} \] Now, finding a common denominator on the left side: \[ \frac{(200-a) - (20-a)}{(20-a)(200-a)} = \frac{5}{64} \] This simplifies to: \[ \frac{180}{(20-a)(200-a)} = \frac{5}{64} \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ 180 \cdot 64 = 5(20-a)(200-a) \] Calculating \( 180 \cdot 64 \): \[ 11520 = 5(20-a)(200-a) \] ### Step 8: Expand and rearrange Expanding the right side: \[ 11520 = 5(4000 - 220a + a^2) \] Dividing through by 5: \[ 2304 = 4000 - 220a + a^2 \] Rearranging gives: \[ a^2 - 220a + (4000 - 2304) = 0 \] This simplifies to: \[ a^2 - 220a + 1696 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{220 \pm \sqrt{220^2 - 4 \cdot 1 \cdot 1696}}{2 \cdot 1} \] Calculating the discriminant: \[ 220^2 = 48400, \quad 4 \cdot 1696 = 6784 \] Thus: \[ \sqrt{48400 - 6784} = \sqrt{41616} = 204 \] So: \[ a = \frac{220 \pm 204}{2} \] Calculating the two possible values: 1. \( a = \frac{424}{2} = 212 \) 2. \( a = \frac{16}{2} = 8 \) ### Step 10: Determine valid solutions Since \( a \) must be less than 20 (to keep the denominators positive), we discard \( a = 212 \). Thus, the valid solution is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos

Similar Questions

Explore conceptually related problems

If {(2^(4))^(1//2)}^(?)=256 , find the value of '?'.

If (1+x-2x^(2))^(20)=a_(0)a_(1)x=a_(2)x^(2)+a_(3)x^(3)+...+a_(40)x^(40) then find the value of a_(1)+a_(3)+a_(5)+...+a_(39)

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + a_(1) + a_(2) + "……" + a_(19) is

sum_(i=1)^20 (.^20C_(i-1))/(.^20C_i+.^20C_(i-1))=k/21 then find the value of k. (a) 400 (b) 100 (c) 50 (d) 200

The angles of a triangle are (x-40)^(0),(x-20)^(0) and ((1)/(2)x-10)^(0) .find the value of x

JEE MAINS PREVIOUS YEAR-JEE MAIN 2022-Question
  1. The straight line L passing through point of intersection of line bx+1...

    Text Solution

    |

  2. Tower of height h, angle of elevation from point A is alpha . Let B be...

    Text Solution

    |

  3. t=sqrtx+4 then find ((dx)/(dt))(t=4)

    Text Solution

    |

  4. 1/((20-a)(40-a))+1/((40-a)(60-a))+. . .+1/((180-a)(200-a))=1/256 then ...

    Text Solution

    |

  5. Let z=2+3i then value of z^5+(barz)^5 is

    Text Solution

    |

  6. (p wedge q) to (p wedge r) is equivalent to

    Text Solution

    |

  7. Domain of f(x)=sin^-1((x^2-3x+2)/(x^2+2x+7)) is

    Text Solution

    |

  8. If f(x)={((ln(1+5x)-ln(1-alpha x))/x,x ne 0),(10,x=0):} is continuous ...

    Text Solution

    |

  9. The value of sum(r=1)^20 (r^2+1) r! is equal to

    Text Solution

    |

  10. If abs(veca+vecb)^2=absveca^2 + 2 absvecb^2 , veca.vecb=3 and abs(veca...

    Text Solution

    |

  11. The value of int(sec^2x - 2022)/(sinx)^2022 dx

    Text Solution

    |

  12. The system of equations x+y+z=6 2x+8y+alphaz=beta and x+2y+3z=14 ha...

    Text Solution

    |

  13. If roots of x^2-x+4=0 are alpha and beta such that Pn=alpha^n-beta^n ,...

    Text Solution

    |

  14. If abs(z-1/z)=2 then maximum value of absz is

    Text Solution

    |

  15. If sum(k=1)^10 k^2("^10Ck)^2=22000L then L is equal to

    Text Solution

    |

  16. Find number of solution of equation 2cos ((x^2+x)/6) ge 4^x+4^-x is

    Text Solution

    |

  17. The sum and product of mean and variance of binomial probability distr...

    Text Solution

    |

  18. If y=f(x) is satisfying differential equation dy/dx=(x+y-2)/(x-y) such...

    Text Solution

    |

  19. Number of integers lying between 1024 and 23416 which are divisible by...

    Text Solution

    |

  20. If the curve y=y(x) satisfies dy/dx+((2x^2+11x+13)/(x^3+6x^2+11x+6))y=...

    Text Solution

    |