Home
Class 12
MATHS
Consider the functions f , g : RR to RR ...

Consider the functions f , g : `RR to RR `defined by `f(x) = x^(2) +5/12 and g(x) ={:{(2(1-(4|x|)/3),|x|le3/4),(0,|x|gt3/4):}` If `alpha ` is the area of the region
`{( x,y in RR xx RR :|x|le 3/4 , 0 le y le "min " {f(x),g(x)}}` , then the value of 9 `alpha ` is _________.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE ADVANCED 2022

    JEE ADVANCED PREVIOUS YEAR|Exercise Mathematics (SECTION 2)|6 Videos
  • JEE ADVANCED 2022

    JEE ADVANCED PREVIOUS YEAR|Exercise Mathematics (SECTION 3)|4 Videos
  • JEE ADVANCED 2021

    JEE ADVANCED PREVIOUS YEAR|Exercise QUESTION|38 Videos
  • JEE ADVANCED 2023

    JEE ADVANCED PREVIOUS YEAR|Exercise Question|31 Videos

Similar Questions

Explore conceptually related problems

The area of the region A= {(x,y) in R xx R|0 le x le 3, 0 le y le 4, x^(2) + 3x} is

Let the area of the region {(x, y): 0 le x le 3 , 0 le y le min{x^2+ 2, 2x 2}} be A. Then 12A is equal to _____.

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

The area (in sqaure units) of the region {(x,y):x ge 0, x + y le 3, x^(2) le 4y and y le 1 + sqrt(x)} is

The area ( in sq. units) of the region {(x,y) : x ge 0, x + y le 3, x^(2) le 4 y and y le 1 + sqrt(x)} is :

Find the range of the function (ii) G(x)=3-2x^2, where -4 le x le 5.

If f (x) =x ^(2) -6x + 9, 0 le x le 4, then f(3) =