Home
Class 12
MATHS
For positive integer n, define f(n) =...

For positive integer n, define
`f(n) = n+(16+5n-3n^(2))/(4n+3n^(2)) +(32+n-3n^(2))/(8n+3n^(2)) +(48-3n-3n^(2))/(12n+3n^(2)) +"....."+(25n-7n^(2))/(7n^(2))` ,Then the value of `lim_(n to oo) f(n)` is equal to

A

`3 + 4/3 log_(e) 7`

B

`4 - 3/4 log_(e ) (7/3)`

C

`4 - 4/3 log_(e) (7/3)`

D

`3 + 3/4 log_(e) 7`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE ADVANCED 2022

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHEMATICS (SECTION -1)|8 Videos
  • JEE ADVANCED 2022

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHEMATICS (SECTION -2)|6 Videos
  • JEE ADVANCED 2022

    JEE ADVANCED PREVIOUS YEAR|Exercise Mathematics (SECTION 2)|6 Videos
  • JEE ADVANCED 2021

    JEE ADVANCED PREVIOUS YEAR|Exercise QUESTION|38 Videos
  • JEE ADVANCED 2023

    JEE ADVANCED PREVIOUS YEAR|Exercise Question|31 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

For all positive integer n, prove that (n^(7))/(7)+(n^(2))/(5)+(2)/(3)n^(3)-(n)/(105) is an integer

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim_(n to oo)f(n) equals

lim_ (n rarr oo) [(1) / (n) + (n ^ (2)) / ((n + 1) ^ (3)) + (n ^ (2)) / ((n + 2) ^ (3)) + ...... + (1) / (8n)]

lim_ (n rarr oo) ((n) / (n ^ (2) +1) + (n) / (n ^ (2) +2) + (n) / (n ^ (2) +3) +. .. (n) / (n ^ (2) + n))