Home
Class 12
MATHS
If y sqrt(1- x)^(2) + x sqrt(1-y)^(2) = ...

If `y sqrt(1- x)^(2) + x sqrt(1-y)^(2) = 1`, then prove that `(dy)/(dx) = sqrt((1-y)^(2)/((1-x)^(2)))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2023 TERM I

    CBSE MODEL PAPER|Exercise SECTION C|9 Videos
  • SAMPLE PAPER 2023 TERM I

    CBSE MODEL PAPER|Exercise SECTION D |6 Videos
  • SAMPLE PAPER 2023 TERM I

    CBSE MODEL PAPER|Exercise SECTION E|10 Videos
  • SAMPLE PAPER 2022 TERM II

    CBSE MODEL PAPER|Exercise SECTION C|5 Videos
  • SAMPLE PAPER 2024

    CBSE MODEL PAPER|Exercise Question|102 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

y sqrt(1-x^(2))+x sqrt(1-y^(2))=1,prov et h a t (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2)), then prove that (dy)/(dx)=(co^(1-x)x)/((1-x^(2))^((3)/(2)))

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))