Home
Class 12
MATHS
Let y =f (x) be a continuous function su...

Let `y =f (x)` be a continuous function such that `(dy)/(dx)=|x-1|`. If `y (0)=0` then `y (3)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=f (x) be a real valued function satisfying x (dy)/(dx) =x ^(2) +y-2, f (1)=1, then :

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for x in [0, a] . Then int_(0)^(a)(dx)/(1+e^(f(x))) is equal to

Let y=f(x) be a real valued function satistying x(dy)/(dx)=x^(2)+y-2,f(1)=1 then f(3) equal

Let y=f(x) is a solution of differential equation e^(y)((dy)/(dx)-1)=e^(x) and f(0)=0 then f(1) is equal to

Let y=f(x) is a solution of differential equation e^(y)((dy)/(dx)-1)=e^(x) and f(0)=0 then f(1) is equal to

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let f:(-oo,oo) -> [0,oo) be a continuous function such that f(x+y)=f(x)+f(y)+f(x)f(y),AAx in Rdot Also f'(0)=1. Then [f(2)] equal ([dot] represents the greatest integer function ) a. 5 b. 6 c. 7 d. 8

Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = 0 and f'(0)=3 ,then

Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = 0 and f'(0)=3 ,then