Home
Class 11
MATHS
lim(x->0)(1+mx)^(m/x)...

`lim_(x->0)(1+mx)^(m/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x to 0)(1+x)^(1/x)=e, prove that lim_(x to 0)(1+3x)^(((x+2))/(x))=e^(6).

lim_(xtooo)(1+k/x)^(m/x)

Evaluate lim_(xto0)((1+x)^(m)-1)/((1+x)^(n)-1)

Using the L .Hospital rule find limits of the following functions : lim_(x to 0) (cos mx)^(n//x^(2))

Evaluate the following limits : Lim_( x to 0) ((1+x)^(m)-1)/((1+x)^(n)-1)

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) = e^(x) - x) = (3)/(2) then the value of m is _____

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) - e^(x) - x) = (3)/(2) then the value of m is _____

lim_(x rarr0)(1-cos mx)/(x^(2))

lim_(x rarr0)(1-cos mx)/(1-cos nx), n!=0

lim_(x rarr0)(1-cos mx)/(1-cos nx),n!=0