Home
Class 12
PHYSICS
If vecp =3veci +sqrt 3vecj +2veck and ve...

If `vecp =3veci +sqrt 3vecj +2veck` and `vecQ=4veci +sqrt3vec j+2.5veck` then, the unit vector in the direction of `vecP times vecQ` is `1/x (sqrt3i+vecj-2sqrt3veck)`. The value of x is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector in the direction of the cross product of two vectors \(\vec{P}\) and \(\vec{Q}\). Let's go through the steps systematically. ### Step 1: Define the vectors Given: \[ \vec{P} = 3\hat{i} + \sqrt{3}\hat{j} + 2\hat{k} \] \[ \vec{Q} = 4\hat{i} + \sqrt{3}\hat{j} + 2.5\hat{k} \] ### Step 2: Set up the cross product The cross product \(\vec{P} \times \vec{Q}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{P}\) and \(\vec{Q}\): \[ \vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & \sqrt{3} & 2 \\ 4 & \sqrt{3} & 2.5 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant: \[ \vec{P} \times \vec{Q} = \hat{i} \begin{vmatrix} \sqrt{3} & 2 \\ \sqrt{3} & 2.5 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 4 & 2.5 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & \sqrt{3} \\ 4 & \sqrt{3} \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} \sqrt{3} & 2 \\ \sqrt{3} & 2.5 \end{vmatrix} = \sqrt{3} \cdot 2.5 - 2 \cdot \sqrt{3} = 2.5\sqrt{3} - 2\sqrt{3} = 0.5\sqrt{3} \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 3 & 2 \\ 4 & 2.5 \end{vmatrix} = 3 \cdot 2.5 - 2 \cdot 4 = 7.5 - 8 = -0.5 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 3 & \sqrt{3} \\ 4 & \sqrt{3} \end{vmatrix} = 3\sqrt{3} - 4\sqrt{3} = -\sqrt{3} \] Putting it all together: \[ \vec{P} \times \vec{Q} = 0.5\sqrt{3} \hat{i} + 0.5 \hat{j} + (-\sqrt{3}) \hat{k} \] Thus, \[ \vec{P} \times \vec{Q} = 0.5\sqrt{3} \hat{i} - 0.5 \hat{j} - \sqrt{3} \hat{k} \] ### Step 4: Find the magnitude of the cross product To find the unit vector, we first need the magnitude of \(\vec{P} \times \vec{Q}\): \[ |\vec{P} \times \vec{Q}| = \sqrt{(0.5\sqrt{3})^2 + (0.5)^2 + (-\sqrt{3})^2} \] Calculating: \[ = \sqrt{\frac{3}{4} + \frac{1}{4} + 3} = \sqrt{\frac{3 + 1 + 12}{4}} = \sqrt{\frac{16}{4}} = \sqrt{4} = 2 \] ### Step 5: Find the unit vector The unit vector in the direction of \(\vec{P} \times \vec{Q}\) is: \[ \hat{R} = \frac{\vec{P} \times \vec{Q}}{|\vec{P} \times \vec{Q}|} = \frac{0.5\sqrt{3} \hat{i} + 0.5 \hat{j} - \sqrt{3} \hat{k}}{2} \] This simplifies to: \[ \hat{R} = \frac{1}{4} \sqrt{3} \hat{i} + \frac{1}{4} \hat{j} - \frac{\sqrt{3}}{2} \hat{k} \] ### Step 6: Compare with given unit vector We are given that the unit vector is: \[ \frac{1}{x} (\sqrt{3} \hat{i} + \hat{j} - 2\sqrt{3} \hat{k}) \] Setting the two expressions equal: \[ \frac{1}{4} \sqrt{3} \hat{i} + \frac{1}{4} \hat{j} - \frac{\sqrt{3}}{2} \hat{k} = \frac{1}{x} (\sqrt{3} \hat{i} + \hat{j} - 2\sqrt{3} \hat{k}) \] ### Step 7: Solve for \(x\) From the coefficients of \(\hat{i}\): \[ \frac{1}{4} \sqrt{3} = \frac{\sqrt{3}}{x} \implies x = 4 \] Thus, the value of \(x\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise PHYSICS (SECTION -B)|10 Videos

Similar Questions

Explore conceptually related problems

Write the unit vector in the direction of vecA=5veci+vecj-2veck .

If vecp = hati + hatj, vecq = 4hatk - hatj " and " vecr =hati + hatk , then the unit vector in the direction of 3vecp+ vecq - 2vecr is

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

IF veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck find the angle between veca and vecb .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

Find the angle between veca=3veci+3vecj-3veck and vecb=2veci+vecj+3veck .

If veca=2veci-3vecj+2veck and vecb=veci+2vecj+veck , find (i) veca.vecb , (ii) vecaxxvecb and (iii) vecbxxveca

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

JEE MAINS PREVIOUS YEAR-JEE MAINS 2023 JAN ACTUAL PAPER-Question
  1. A uniform electric field of 10 N/C is created between two parallel cha...

    Text Solution

    |

  2. In the given circuit, the equivalent resistance between the terminal A...

    Text Solution

    |

  3. If vecp =3veci +sqrt 3vecj +2veck and vecQ=4veci +sqrt3vec j+2.5veck t...

    Text Solution

    |

  4. An object of mass 'm' initially at rest on a smooth horizontal plane s...

    Text Solution

    |

  5. An LCR series circuit of capacitance 62.5 nF and resistance of 50Omega...

    Text Solution

    |

  6. As shown in the figure, in an experiment to determine Young's modulus ...

    Text Solution

    |

  7. The distance between two consecutive points with phase difference of 6...

    Text Solution

    |

  8. A ray of light is incident from air on a glass plate having thickness ...

    Text Solution

    |

  9. I(CM) is the moment of inertia of a circular disc about an axis (CM) p...

    Text Solution

    |

  10. The wavelength of the radiation emitted is lambda0 when an electron ju...

    Text Solution

    |

  11. A wire of length 1 m moving with velocity 8 m/s at right angles to a m...

    Text Solution

    |

  12. The distance travelled by a particle is related to time t as x = 4x^2 ...

    Text Solution

    |

  13. According to law of equipartition of energy the molar specific heat of...

    Text Solution

    |

  14. A particle executes simple harmonic between x=-A and x=+A.If time take...

    Text Solution

    |

  15. The resistance of a wire is 5Omega.It's new resistance in ohm if stret...

    Text Solution

    |

  16. For moving coil galvanometer,the deflection in the coil is 0.05rad whe...

    Text Solution

    |

  17. Statement 1: When a Si sample is doped with Boron,it becomes P type an...

    Text Solution

    |

  18. Two objects are projected with same velocity u however at different an...

    Text Solution

    |

  19. The graph between two temperature scales A and B is shown in Fig. Betw...

    Text Solution

    |

  20. Every planet revolves around the sun in an elliptical orbit :- A.The...

    Text Solution

    |