12th Biology | SET 4 Board Paper | VVI Objective 2023 | Jeev Vigyan Objective Ques | model paper mcq
12th Biology | SET 4 Board Paper | VVI Objective 2023 | Jeev Vigyan Objective Ques | model paper mcq
Similar Questions
Explore conceptually related problems
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} If an object of mass 2 kg and constant b = 4 (N-s)/(m) has terminal speed v_(T) in a liquid then time required to reach 0.63 v_(T) from start of the motion is :
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} At the start of motion when object is released in the liquid, its acceleration is :
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends on the properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} Which object would first acquire half of their respective terminal speed in minimum time from start of the motion of all were released simultaneously ?
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} Which object has greatest terminal speed in the liquid ?
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} If buoyant force were also taken into account then value of terminal speed would have
A situation is shown in which two objects A and B start their motion from same point in same direction. The graph of their velocities against time is drawn. u_A and u_B are the initial velocities of A and B respectively. T is the time at which their velocities become equal after start of motion. You cannot use the data of one question while solving another question of the same set. So all the questions are independent of each other. 7. After 10 s of the start of motion of both objects A and B, find the value of velocity of A if u_A = 6 ms^-1 , u_B = 12 ms^-1 and at T velocity of A is 8 ms^-1 and T = 4s
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil. The sphere approaches a terminal speed of 10.00 cm/s. Time required to achieve speed 6.32 cm/s from start of the motion is (Take g = 10.00 m//s^(2) ) :
Cash is the mother's milk of crime. Its appeal to criminals is clear. Unlike cars or paintings, it can be concealed immediately after being pinched. It has no security features to prevent its being easily and anonymously spent on legal or illegal goods. Unlike nearly any other object that can be stolen, it needs no fence. But a new paper from the National Bureau of Economic Research found that electronic payments led to a drop of 9.8% in the overall crime rate and caused the rates of burglary, assault, and larceny to fall by 7.9%, 12.5%, and 9.6% respectively. The introduction of electronic payments was also associated with a lower number of arrests, an indication that the crime rates decline did not stem from more aggressive policing. The paper said that the shift from cash to cards since 1990 debit-card transactions have risen 27-fold, whereas cash volume has grown by just 4% a year may have also contributed to the decline in crime. Which of the following conclusions can most properly be drawn from the information above?
In an objective paper, there are two sections of 10 questions each.For "section 1", each question has 5 options and only one optionis correct and "section 2" has 4 options with multiple answers and marks for a question in this section is awarded only if he ticks all correct answers. Marks for each question in "sectionl 1" is 1 and in "section 2" is 3. (There is no negative marking.) If a candidate attempts only two questions by guessing, one from "section 1" and one from "section 2", the probability that he scores in both question is 74/75
An examination was held during the 2 weeks of April 3rd-Sunday to 16th Saturday. There was 1 paper for the six subjects - Physics, Chemistry, Biology, Maths, English and Hindi. Only 1 paper per day No exam on Saturdays and Sundays and Holiday on April 5th. Only 3 exams were there in a week. Chemistry was before Biology and Maths was on the next day of Hindi. The day on which the paper of biology and maths were held was the same, while that for chemistry and physics was also the same. There was no exam for 3 days between Physics and the exam prior to it. Hindi exam on Tuesday and one exam between Hindi and English exam. There was at least a gap of one day between any 2 science paper. Which of the following exam was held on April 12th ?
Recommended Questions
- 12th Biology | SET 4 Board Paper | VVI Objective 2023 | Jeev Vigyan Ob...
Text Solution
|
- किसी धारामापी को अमीटर में कैसे परिवर्तित किया जाता है? उपयुक्त परिपथ ...
Text Solution
|
- परमाणु मॉडल के आधार पर प्रतिचुम्बकत्व एवं अनुचुम्बकत्व में अन्तर लिखिए...
Text Solution
|
- सिद्ध कीजिए कि int(a//4)^(3a//4)(sqrtx)/(sqrt(a-x)+sqrtx)dx=(a)/(4)
Text Solution
|
- निम्नलिखित समाकलों को हल कीजिए । int(x^(3))/((4-x^(4))^(2))dx
Text Solution
|
- समीकरणो x - y + 1=0 और 3x+ 2y - 12 = 0 का ग्राम खीचिए। x -अक्ष और इन...
Text Solution
|
- 4 : 4 उपसहसंयोजन (समन्वय) किस्मे पाया जाता है ?
Text Solution
|
- निम्नलिखित कथनों पर विचार करें : कथन I : यदि A और B प्रतिदर्श समष्टि...
Text Solution
|
- यदि सभी परिमेय संख्याओं के समुच्चय Q में एकद्विचर संक्रिया o=QxxQrarrQ...
Text Solution
|