Home
Class
GUIDANCE
यदि bar(u),bar(v),bar(w) असमतलीय सदिश हो...

यदि bar(u),bar(v),bar(w) असमतलीय सदिश हों तथा p, q वास्तविक संख्याएँ हों तब [3bar(u),p bar(v),p ...

Promotional Banner

Similar Questions

Explore conceptually related problems

Let bar(u),bar(v) and bar(w) be 3 vectors such that |bar(u)|=1 , |bar(v)|=2 , |bar(w)|=3 .If the projection of, bar(v) along bar(u) is equal to that of bar(w) along bar(u),bar(v) and bar(w) are perpendicular to each other, then |bar(u)-bar(v)+bar(w)|=

Let bar(u),bar(v),bar(w) be such that |bar(u)|=1, |bar(v)|=2, |bar(w)|=3 If the projection of bar(v) along bar(u) is equal to that of bar(w) along bar(u) and bar(v),bar(w) are perpendicular then |bar(u)-bar(v)+bar(w)|=

Let bar(u),bar(v),bar(w) be such that |bar(u)|=1, |bar(v)|=2, |bar(w)|=3 If the projection of bar(v) along bar(u) is equal to that of bar(w) along bar(u) and bar(v),bar(w) are perpendicular then |bar(u)-bar(v)+bar(w)|=

Let bar(u),bar(v),bar(w) be such that |bar(u)|=1, |bar(v)|=2, |bar(w)|=3 If the projection of bar(v) along bar(u) is equal to that of bar(w) along bar(u) and bar(v),bar(w) are perpendicular then |bar(u)-bar(v)+bar(w)|=

If bar(u),bar(v),bar(w) are three non coplanar vectors then (bar(u)+bar(v)-bar(w))*{(bar(u)-bar(v))xx(bar(v)-bar(w))}=

If bar(a),bar(b),bar(c) and bar(p),bar(q)bar(r) are two sets of three non- coplanar vectors such that bar(a)*bar(p)+bar(b).bar(q)+bar(c).bar(r)=3 then bar(P)=.......bar(q)=......,bar(r)=......

If bar(u)=bar(i)-2bar(j)+bar(k),bar(v)=3bar(i)+bar(k)andbar(w)=bar(j)-bar(k) , are given vectors, then find (1) [bar(u)xxbar(v)" "bar(u)xxbar(w)" "bar(v)xxbar(w)] (2) (bar(u)+bar(w))*[(bar(u)xxbar(v))xx(bar(v)xxbar(w))] .

Let bar(u)=hat i+hat j, bar(v)=hat i-hat j,bar(w)=hat i+2hat j+3hat k , n unit vector such that bar(u).bar(n)=0,bar(v).bar(n)=0 then |bar(w).bar(n)| =

let bar(a),bar(b)&bar(c) be three non-zero non coplanar vectors and bar(p),bar(q)&bar(r) be three vectors defined as bar(p)=bar(a)+bar(b)-2bar(c);bar(q)=3bar(a)-2bar(b)+bar(c)&bar(r)=bar(a)-4bar(b)+2bar(c) .If v_(1),v_(2) are the volumes of parallelopiped determined by the vectors bar(a),bar(b),bar(c) and bar(p),bar(q),bar(r) respectively then v_(2):v_(1) is

Let bar(u)=bar(i)+bar(j),bar(v)=bar(i)-bar(j),bar(w)=bar(i)+2bar(j)+3bar(k) .If bar(n) is a unit vector such that bar(u).bar(n)=0,bar(v).bar(n)=0 then |bar(w).bar(n)|=