Home
Class
CHEMISTRY
फ़ंक्शन f(x) को इस प्रकार परिभाषित किया ...

फ़ंक्शन f(x) को इस प्रकार परिभाषित किया गया है: f(x)={{:(x^(2)+ax+b , 0lexlt2),(3x+2, 2lexle4),(2ax+5b...

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) Is defined as follows : f(x)={{:(x^(2)+ax+b" , "0lexlt2),(3x+2" , "2lexle4),(2ax+5b" , "4ltxle8):} . If f(x) is continuous on [0,8], find the values of 'a' and 'b'.

If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0 le x lt 2),(3x+2", for " 2 le x le 4),(2ax+5b", for " 4 lt x le 8):} , then

If f (x) is continous on [0,8] defined as f(x)=x^(2)+ax, "for" 0lex lt 2 =3x+2, "for" 2 lex le4 =2ax+5b, "for" 4 lt x le 8, find a and b.

If f(x) {:(=x^(2)+ax+b", if "0 le x lt 2 ),(= 3x+2", if " 2 le x le 4 ),(=2ax + 5b ", if " 4 lt x le 8 ) :} is continuous on [ 0,8] then a-b = ……

f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} , f'(0)+f'(2)=

If f: Z to Z be given by f(x)=x^(2)+ax+b , Then,

If f(x)=2x^(4)-13x^(2)+ax+b is divisible by x^(2)-3x+2 then (a,b)=

If f(x)=2x^(4)-13x^(2)+ax+b is divisible by x^(2)-3x+2 then (a ,b) is

Examine the differentiability of the function 'f' defined by : f(x)={{:(2x+3",if "-3lexlt-2),(x+1",if "-2lexlt0),(x+2",if "0lexle1):} .