Home
Class
MATHS
P(1, 7, sqrt2) ಒಂದು ಬಿಂದುವಾಗಿರಲಿ ಮತ್ತು L...

P(1, 7, sqrt2) ಒಂದು ಬಿಂದುವಾಗಿರಲಿ ಮತ್ತು L ರೇಖೆಯ ಸಮೀಕರಣವು (x-1)/(sqrt2)=(y-7)/(1)=(z-sqrt2...

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(1, 7, sqrt2) be a point and the equation of the line L is (x-1)/(sqrt2)=(y-7)/(1)=(z-sqrt2)/(-1) . If PQ is the distnace of the plane sqrt2x+y-z=1 from the point P measured along a line inclined at an angle 60^(@) with L, then the length of PQ is

(1)/(sqrt(2)+sqrt(5)-sqrt(7))

(sqrt(2)+7)/(sqrt(2)-1)+sqrt(8)

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

Solve :sqrt(2x+7)+sqrt(3x-18)=sqrt(7x+1)

Solve (sqrt2+1)^x +(sqrt2-1)^x = 6 .

If sqrt2=1.4142 then 7/(3+sqrt2)=

(5-sqrt(-7))(5+sqrt(-7))(2-sqrt(-1))(2+sqrt(-1))

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)