Home
Class
MATHS
यदि :\nA=[1 2 0-1 1 2 2-1 1], nA dj(A)=\...

यदि :\nA=[1 2 0-1 1 2 2-1 1], nA dj(A)=\n\n[3 5-1-2 1 5 4-2 3]\n (बी) [ 3-5 1 2-1 5 4 2 3]\n\...

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( 1 - 1/3 ) ( 1 - 1/4 ) ( 1 - 1/5 ) ---------- ( 1 - 1/n ) is ( a ) 2/n ( b ) 4/n ( c ) 3/n ( d ) 5/n

lim_ (n rarr oo) (3 * 2 ^ (n + 1) -4 * 5 ^ (n + 1)) / (5 * 2 ^ (n) + 7 * 5 ^ (n)) =

lim_ (n rarr oo) {(1 ^ (2)) / (1-n ^ (3)) + (3) / (1 + n ^ (2)) + (5 ^ (2)) / (1- n ^ (3)) + (7) / (1 + n ^ (2)) + ....}

lim_ (n rarr oo) {(1 ^ (2)) / (1-n ^ (3)) + (3) / (1 + n ^ (2)) + (5 ^ (2)) / (1- n ^ (3)) + (7) / (1 + n ^ (2)) + ....}

lim_ (n rarr oo) (((n ^ (5) +2) ^ ((1) / (4))) - ((n ^ (2) +1) ^ ((1) / (3))) ) / ((n ^ (4) +2) ^ ((1) / (5)) - (n ^ (3) +1) ^ ((1) / (2))) is

lim_ (n rarr oo) (2.3 ^ (n + 1) -3.5 ^ (n + 1)) / (2.3 ^ (n) + 3.5 ^ (n)) =

5.lim_ (n rarr oo) (2 ^ (n + 1) + 3 ^ (n + 1)) / (2 ^ (n) + 3 ^ (n)) is

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))