Home
Class
SCIENCE
যদি (xa)^2+(yb)^2=c^2, কিছু c gt 0 এর জন...

যদি `(xa)^2+(yb)^2=c^2`, কিছু `c gt 0` এর জন্য, প্রমাণ করুন যে `([1+((dy)/(dx))^2]^(3/ 2))/((d^2y)/(dx^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If (x-a)^2+(y-b)^2=c^2\ \ (c >0) then ([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx^2)) equals c (b) c^2 (c) c^3 (d) c^4

If ((dy)/(dx))^(2)+y^(2)=1(2a)/(y)," then "(d^(2)y)/(dx^(2))+y=

If (x-a)^(2)+(y-b)^(2)=c^(2) for some for some prove that prove that ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2), for some c>0[1+((dy)/(dx))^(2)]^((3)/(2)) provethat ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

if (x-a)^(2)+(y-b)^(2)=c^(2) then (1+((dy)/(dx))^(2))/((d^(2)y)/(dx^(2)))=?

The degree of the differential equation [1+((dy)/(dx))^(2)]^((3)/(2))=(d^(2)(y)/(dx^(2)))

The degree of the differential equation [1+((dy)/(dx))^(2)]^(3//2)=(d^(2)y)/(dx^(2))"is"

The differential equation of the family of curves whose equation is (x-h)^2+(y-k)^2=a^2 , where a is a constant, is (A) [1+(dy/dx)^2]^3=a^2 (d^2y)/dx^2 (B) [1+(dy/dx)^2]^3=a^2 ((d^2y)/dx^2)^2 (C) [1+(dy/dx)]^3=a^2 ((d^2y)/dx^2)^2 (D) none of these

Degree of DE: (d^(2)y)/(dx^(2))+[1+((dy)/(dx))^(2)]^(3/2)=0