Home
Class
MATHS
Solve for x (i) 2^(|x+1|)+2^(|x|)=6 and ...

Solve for `x` `(i) 2^(|x+1|)+2^(|x|)=6` and `x in I` `(ii) x^(2)+x+1+|x-3| le |x^(2)+2x-2|` `(i

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^(2)-x+ (1-i)=0

Solve (x)/(x+2) le (1)/(|x|)

Solve for x (i) |x+1|=4x+3 (ii) |x+1|=|x+3| (iii) 7|x-2|-|x-7|=5 (iv) ||x-1|-2|=6x+8 (v) |2x^(2)-3x+1|=|x^(2)+x-3|

Solve : (i) -2 le ||x^(2) +1| -3 | le 7 (ii) |x^(2) - 4x| le 5

Solve the following (i) | x-2 | = (x-2) (ii) |x+3 |=-x-3 (iii) |x^2-x|=x^2-x (iv) |x^2-x-2|=2 +x-x^2

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

I = int( 6 x^(3) + x^(2)-2x + 1) /( 2x - 1) dx .

Solve : (1)/(x^(2) +x) le(1)/(2x^(2) + 2x+3)