Home
Class
PHYSICS
यदि बल (vecF)=4hati+4hatj और विस्थापन (v...

यदि बल (vecF)=4hati+4hatj और विस्थापन (vecs)=3hati+6hatk है तो किया गया कार्य है | 11 | वे...

Promotional Banner

Similar Questions

Explore conceptually related problems

If force (vecF)=4hati+4hatj and displacement (vecs)=3hati+6hatk then the work done is

If vecF=2hati+3hatj-hatk and vecr=hati-hatj+6hatk find vecrxxvecF

If a force vecF=4hati+5hatj causes a displacement vecs=3hati+6hatk work done is

Find the angles between the following pairs of vectors: (i) vec(A) = hati + hatj +hatk and vec(B) =- 2hati - hatj - 2 hatk . (ii) vec(A) =- 2hati +2hatj - hatk and vec(B) = 3hati + 6 hatj +2 hatk (iii) vec(A) = 4 hati +6 hatj - 3 hatk and vec(B) =- 2hati - 5hatj +7 hatk

Find the area of the triangle formed by the tips of the vectors vec(a) = hati - hatj - 3hatk, vec(b) = 4hati - 3hatj +hatk and vec(c) = 3 hati - hatj +2 hatk .

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

Determine the vector which when added to the resultant of vec(A) =2hati - 4hatj - 6hatk and vec(B) = 4hati +3hatj + 3hatk gives the unit vector along z-axis.

Find the shortest distance between the lines: (i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk) and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) (ii) vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk) and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) (iii) vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) and vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk )

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .