Home
Class
MATHS
Verify A (a d j A) = (a d j A) A = |A|I ...

Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)] | 12 | DETERMINANTS | MATH...

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify A(adj.A)=(adj.A)A=|A|I : [{:(1,-1,2),(3,0,-2),(1,0,3):}]

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(1,-1,2),(3,0,-2),(1,0,3):}]

Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" [2 3-4-6]

Find the adjoint of the given matrix and verify in each case that A.(adj A)=(adj A).A=|A\|.I. [(1,-1,2),(3,1,-2),(1,0,3)]

If A = {:((1,-1,2),(3,0,-2),(1,0,3)):} , verify that A (adj A) = |A|* I .

If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j A=3A^T .

If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot

If A=[1-3 2 0] , write a d j\ A .

If A = [[1,-1,2],[3,0,-2],[1,0,3]] prove A.adjA=|A|I Also,find A^ (− 1)

If A=[3 1 2-3] , then find |a d j\ A| .