Home
Class
MATHS
समीकरण a^2x^2+2h(a+b)x y+b^2y^2=0\nand a...

समीकरण a^2x^2+2h(a+b)x y+b^2y^2=0\nand ax^2+2h x y+by^2=0\nप्रतिनिधित्व\n | कक्षा 11 | स्ट्रा...

Promotional Banner

Similar Questions

Explore conceptually related problems

The equations a^2x^2+2h(a+b)xy+b^2y^2=0 and ax^2+2hxy+by^2=0 represent.

{:(ax - by = a^(2) + b^(2)),(x + y = 2a):}

{:(x + y = a + b),(ax - by = a^(2) - b^(2)):}

Show that pair of lines given by a^(2)x^(2)+2h(a+b)xy+b^(2)y^(2)=0 is equally inclined to the pair given by ax^(2)+2hxy+by^(2)=0

Show that the pair of lines given by a^2x^2+2h(a+b)xy+b^2y^2=0 is equally inclined to the pair given by ax^2+2hxy+by=0 .

If the pairs of lines ax^2+2hxy+by^2=0 and a'x^2+2h'xy+b'y^2=0 have one line in common, then (ab'-a'b)^2 is equal to

(i) 12x^(2) + 11x + 2 = 0 (ii) 25y^(2) + 15y+2 = 0

If the bisectors of angles represented by ax^(2)+2hxy+by^(2)=0 and a'x^(2)+2h'xy+b'y^(2)=0 is same , then