Home
Class
MATHS
यदि 3 cot A = 4 , तो जाँच कीजिए कि (1 - ...

यदि 3 cot A = 4 , तो जाँच कीजिए कि (1 - tan^(2) A)/(1 + tan^(2) A) = cos^(2) A - sin^(2) A है या...

Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^ (2) A.cot ^ (2) A-cos ^ (2) A * tan ^ (2) A = 1

If quad 3cot A=4 check whether (1-tan^(2)A)/(1+tan^(2)A)=cos^(2)A-sin^(2)A or not.

cos ^ (2) A-sin ^ (2) A = (1-tan ^ (2) A) / (1 + tan ^ (2) A)

((1+tan^(2)A)cot A)/(cos ec^(2)A)=tan A

Prove :sin^(2)A cot^(2)A+cos^(2)A tan^(2)A=1

((1+tan^(2)A)/(1+cot^(2)A))=((1-tan A)/(1-cot A))^(2)=tan^(2)A

(sin^(2)A)/(1+cot A)+(cos^(2)A)/(1+tan A)=1-sin A*cos A

(tan A)/((1+tan^(2)A)^(2))+(cot A)/((1+cot^(2)A)^(2))=sin A cos A

If 3cot theta=4 then show that (1-tan^(2)theta)/(1+tan^(2)theta)=(cos^(2)theta-sin^(2)theta)

sin^(2)A*tan^(2)A+cos^(2)A*cot^(2) A= A) 1 + tan^(2)A + cot^(2) A B) tan^(2)A +cot^(2) A-1 C) 1 + sec^(2)A + tan^(2) A D) 1 + csc^(2)A + cot^(2) A