Home
Class
MATHS
Prove that:tan4x=(4tanx(1-tan^2x))/(1-6t...

Prove that:`tan4x=(4tanx(1-tan^2x))/(1-6tan^2x+tan^4x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

Prove that: (i) tan 8x-tan6x-tan2x=tan8x tan6x tan2x

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Prove that :tan4 theta=(4tan theta-4tan^(3)theta)/(1-6tan^(2)theta+tan^(4)theta)

tan x+tan(x+(pi)/(3))+tan(x+2(pi)/(3))=3 prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

Prove that (sec8x-1)/(sec4x-1)=(tan8x)/(tan2x)

Prove that tan13x = tan 4x + tan 9x + tan 4x tan 9x tan 13x

Solve: tan^(2)x.tan^(2)3x.tan4x=tan^(2)x-tan^(2)3x+tan4x

If tan x+tan(x+(pi)/(3))+tan(x+(2 pi)/(3))=3 then prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

Solve 3tan2x-4tan3x=tan^(2)3x tan2x