Home
Class
CHEMISTRY
দুটি সমকেন্দ্রিক বৃত্ত বিবেচনা করুন\nC(1...

দুটি সমকেন্দ্রিক বৃত্ত বিবেচনা করুন\nC_(1):x^(2)+y^(2)=1 এবং C_(2):x^(2)+y^(2)-4=0 .একটি প্যারাবোলা হল ড. ..

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the two curves C_(1);y^(2)=4x,C_(2)x^(2)+y^(2)-6x+1=0 then :

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y-1 =0

Number of common tangents to the circles C_(1):x ^(2) + y ^(2) - 6x - 4y -12=0 and C _(2) : x ^(2) + y ^(2) + 6x + 4y+ 4=0 is

Consider the circles C_(1):x^(2)+y^(2)-4x+6y+8=0;C_(2):x^(2)+y^(2)-10x-6y+14=0 Which of the following statement(s) hold good in respect of C_(1) and C_(2)?

The number of common tangents to the two circles C_(1):x^(2)+y^(2)=25,C_(2):x^(2)+y^(2)-4x-6y+4-0 is (are)

If x + y = 1, show that D ^ (n) (x ^ (n) y ^ (n)) = n! [Y ^ (n) - (nC_ (1)) ^ (2) y ^ (n -1) x + (nC_ (2)) ^ (2) y ^ (n-2) x ^ (2) + ...... + (- 1) ^ (n) x ^ (n)]