Home
Class
MATHS
दो वैक्टर vec(a) और vec(b) ऐसे हैं कि |v...

दो वैक्टर `vec(a)` और `vec(b)` ऐसे हैं कि `|vec(a)+vec(b)|=|vec(a)-vec(b)|` कोण क्या है

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(a)|=|vec(b)| , then vec(a)=vec(b) .

If vec(a)=-vec(b) , then |vec(a)|=|vec(b)| .

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .

If | vec a + vec b | = | vec a-vec b |, then

if | vec a | = | vec b | = | vec a + vec b | = 1 then | vec a-vec b |

(vec A*vec B)+|vec A+vec B|^(2)=

(a) What is the geometric significance of the relation |vec(a)+vec(b)|=|vec(a)-vec(b)| ? (b) Prove geometrically that |vec(a)+vec(b)|le |vec(a)|+|vec(b)| .

if | vec a | = | vec b | then find [(vec a + vec b) * (vec a-vec b)]