Home
Class
GUIDANCE
ਲਾਈਨ vecr=hati + 3 hatj + 2hatk + lamda ...

ਲਾਈਨ vecr=hati + 3 hatj + 2hatk + lamda (2 hati...) ਤੋਂ ਬਿੰਦੂ (3,8,2) ਦੀ ਦੂਰੀ ਲੱਭੋ।

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the lines vecr = 3 hati - 2 hatj + 6 hatk + lamda (2 hati + hatj + 2 hatk) and vecr=(2 hatj - 5 hatk)+ mu (6 hati + 3 hatj + 2hatk).

Find the distance of the point (3,8,2) from the line vecr=hati + 3 hatj + 2hatk + lamda ( 2 hati + 4 hatj + 3hatk) measured parallel to the plane vec r . (3 hati + 2 hatj - 2hatk) + 15=0.

The angle between the line vecr = ( 5 hati - hatj - 4 hatk ) + lamda ( 2 hati - hatj + hatk) and the plane vec r.( 3 hati - 4 hatj - hatk) + 5=0 is

Find the shortest distance between the lines vecr = 3 hati + 2hatj - 4 hatk + lamda ( hati +2 hatj +2 hatk ) and vecr = 5 hati - 2hatj + mu ( 3hati + 2hatj + 6 hatk) If the lines intersect find their point of intersection

Find the points of intersection of the line vecr = 2hati - hatj + 2hatk + lambda(3hati + 4hatj + 2hatk) and the plane vecr.(hati - hatj + hatk) = 5

If vecr = hati + hatj + lamda( 2 hati + hatj + 4 hatk ) and vecr (hati + 2 hatj - hatk)=3 are the equations of a line and a plane respectively then which of the following is true ?

Find the angle between the line vecr = (hati +2hatj -hatk ) +lambda (hati - hatj +hatk) and vecr cdot (2hati - hatj +hatk) = 4.

The shortest distance between the lines vecr = (2hati - hatj) + lambda(2hati + hatj - 3hatk) vecr = (hati - hatj + 2hatk) + lambda(2hati + hatj - 5hatk)