Home
Class
ENGLISH GRAMMAR
यदि a(1) (gt 0) , a(2),a(3),a(4),a(5) GP...

यदि a_(1) (gt 0) , a_(2),a_(3),a_(4),a_(5) GP में हैं।, a_(2) +a_(4) = 2a_(3) + 1 और 3_(a_(2)...

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

The number of all possible 5-tuples (a_(1),a_(2),a_(3),a_(4),a_(5)) such that a_(1)+a_(2) sin x+a_(3) cos x + a_(4) sin 2x +a_(5) cos 2 x =0 hold for all x is

If a_(1), a_(2), a_(3), …., a_(9) are in GP, then what is the value of the following determinant? |(ln a_(1), ln a_(2), ln a_(3)),(lna_(4), lna_(5), ln a_(6)), (ln a_(7), ln a_(8), ln a_(9))|

,1+a_(1),a_(2),a_(3)a_(1),1+a_(2),a_(3)a_(1),a_(2),1+a_(3)]|=0, then

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) +a_(2))^(2) = (a_(1)-a_(4))^(2)