Home
Class
GUIDANCE
इन तलोंकेकार्तीयसमीकरणज्ञात करें जिनके स...

इन तलोंकेकार्तीयसमीकरणज्ञात करें जिनके सदिशसमीकरण है : vecr *(3hati+ 3 hatj - 4 hatk )=0 | 12 ...

Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the planes vecr. (2 hati - 3 hatj + hatk) =1 and vecr. (hati - hatj) =4 is

If the point of intersection of the line vecr = (hati + 2 hatj + 3 hatk ) + ( 2 hati + hatj+ 2hatk ) and the plane vecr (2 hati - 6 hatj + 3 hatk) + 5=0 lies on the plane vec r ( hati + 75 hatj + 60 hatk) -alpha =0, then 19 alpha + 17 is equal to :

The line of intersection of the planes vecr . (3 hati - hatj + hatk) =1 and vecr. (hati+ 4 hatj -2 hatk)=2 is:

The position vectors of points A and B are hati - hatj + 3hatk and 3hati + 3hatj - hatk respectively. The equation of a plane is vecr cdot (5hati + 2hatj - 7hatk)= 0 The points A and B

The angle between the line vecr = ( 5 hati - hatj - 4 hatk ) + lamda ( 2 hati - hatj + hatk) and the plane vec r.( 3 hati - 4 hatj - hatk) + 5=0 is

Find the shortest distance between the lines vecr = 2hati - hatj + hatk + lambda(3hati - 2hatj + 5hatk), vecr = 3hati + 2hatj - 4hatk + mu(4hati - hatj + 3hatk)

The symmetric form of the line given by vecr =(2hati -hatj + 3hatk) + lambda(3hati - 4hatj + 5hatk) is

Find the angle between the planes vecr.(3hati-4hatj+5hatk)=0 and vecr.(2hati-hatj-2hatk)=7 .

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .