Home
Class
ENGLISH
(1-1/(2^2))(1-1/(3^2))......(1-1/(9^2))(...

(1-1/(2^2))(1-1/(3^2))......(1-1/(9^2))(1-1/(10^2))=? | CLASS 14 | NUMBER SYSTEM | MATHS | Doubt...

Promotional Banner

Similar Questions

Explore conceptually related problems

2(1)/(2)+(-3(1)/(2))+(-2(1)/(3))+(1)/(9)

2(1)/(7)-3(1)/(14)+2(2)/(7)=?

Find the value of (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))(1-1/(5^(2)))…….(1-1/(9^(2)))(1-1/(10^(2)))

9(3)/(4)-:[2(1)/(6)+{4(1)/(3)-(1(1)/(2)+1(3)/(4))}]

The product of the 9 fractions (1-(1)/(2))(1-(1)/(3))(1-(1)/(4))dots(1-(1)/(10))=

4 1/2+(1-:2 8/9)-3 1/13=

[{(-1/3)^2}^(-2)]^(-1) = (a) 1/(81) (b) 1/9 (c) -1/(81) (d) -1/9

If harmonic mean of numbers (1)/(2),(1)/(2^(2)),(1)/(2^(3)),............(1)/(2^(10)) is (lambda)/(2^(10)-1) then lambda is equal to

The following steps are involved in finding the value of 10 (1)/(3) xx 9(2)/(3) by using an appropriate indentity . Arrange them in sequential order . (A) (10)^(2) - ((1)/(3))^(2) = 100 - (1)/(9) (B) 10(1)/(3) xx 9(2)/(3) = (10 + (1)/(3)) (10 - (1)/(3)) (C) (10 + (1)/(3)) (10 - (1)/(3)) = (10)^(2) - ((1)/(3))^(2) [because (a + b) (a -b) = (a^(2) - b^(2))] (D) 100 - (1)/(9) = 99 + 1 - (1)/(9) = 99(8)/(9)